
Vuo Manual

Vuo 0.7.0

Contents

1 Introduction 5

2 Quick Start 5

2.1 Install Vuo . 5

2.2 Create a composition . 6

2.3 Run the composition . 7

3 The Basics 7

3.1 The ‘flow’ or execution of events . 7

3.2 Nodes, ports, and cables . 8

3.2.1 Sending data and events between nodes 8

3.3 Creating a composition . 10

3.4 Live coding . 11

3.5 Viewing example compositions . 11

1

Contents Page 2 of 43

4 Controlling the Flow of Events 12

4.1 How events travel through a node . 12

4.1.1 Input ports . 12

4.1.2 Output ports . 14

4.2 Controlling when nodes execute . 15

4.2.1 Feedback loops . 15

4.2.2 Logic Nodes . 17

4.2.3 Routing data with select nodes . 17

4.2.4 Executing nodes in parallel . 18

4.2.5 Executing nodes in the background . 20

4.2.6 Executing nodes at a steady rate . 21

4.2.7 Summary . 21

4.3 Controlling the buildup of events . 22

5 Understanding Data 22

5.1 Setting a constant value for a port . 22

5.2 Using the default value of a port . 23

5.3 Sending the same data to multiple ports . 23

5.4 Using drawers . 24

5.5 Storing information . 25

5.6 Types of information . 25

5.6.1 Converting between types . 26

5.6.2 Using generic types . 27

5.7 Interacting with the environment . 28

Revised April 24, 2014

Contents Page 3 of 43

6 Interfacing with Applications 28

6.1 Published ports . 29

6.2 Protocols . 29

7 The Vuo Editor 30

7.1 The Node Library . 30

7.1.1 Docking and visibility . 31

7.1.2 Node names and node display . 31

7.1.3 Node Popovers . 32

7.1.4 Finding Nodes . 32

7.2 Working on the canvas . 32

7.2.1 Putting a node on the canvas . 32

7.2.2 Drawing cables to create a composition . 33

7.2.3 Copying and pasting nodes and cables . 33

7.2.4 Deleting nodes and cables . 33

7.2.5 Modifying and rearranging nodes and cables 34

7.2.6 Viewing a composition . 34

7.2.7 Publishing Ports . 35

7.2.8 Using a protocol for published ports . 35

7.3 Running a composition . 35

7.3.1 Starting and stopping a composition . 36

7.3.2 Firing an event manually . 36

7.3.3 Troubleshooting a running composition . 36

7.4 Exporting a composition to an application . 36

Revised April 24, 2014

Contents Page 4 of 43

8 The Built-in Nodes 37

8.1 Rendering graphics and video . 37

8.1.1 Vuo Coordinates . 37

8.2 Processing and playing audio . 38

8.3 Communicating over a network . 39

8.4 Controlling compositions with devices . 39

9 The Command-Line Tools 39

9.1 Installing the Vuo SDK . 40

9.2 Getting help . 40

9.3 Rendering a composition on the command line . 40

9.4 Building a composition on the command line . 41

9.5 Running a composition on the command line . 41

9.6 Exporting a composition to an application on the command line 42

10 Adding Nodes to Your Node Library 42

10.1 Installing a node . 42

10.2 Creating your own node . 43

11 Troubleshooting 43

Revised April 24, 2014

2 Quick Start Page 5 of 43

1 Introduction

Vuo is a realtime visual programming environment designed to be both incredibly fast and easy to

use. With Vuo, artists and creative people can create audio, visual, and mixed multimedia effects

with ease.

This manual will guide you through the process of installing Vuo and creating your first composition.

Then it will show you the details of all the pieces of a composition and how to put them together.

It will explain how to create and run compositions with the Vuo Editor and, as an alternative, the

command-line tools. It will show you how to make Vuo do even more by adding nodes to your Node

Library.

Many of the compositions in this manual are available from the within the Vuo Editor (File->Open
Example). It may help to open these example compositions in the Vuo Editor and run them as you

work through the manual.

For more resources to help you learn Vuo, see our support page on vuo.org.

For more information on what you can do with Vuo, see our features page and roadmap on vuo.org.

If you have any feedback about this manual, please let us know. We want to make sure you find the

manual helpful.

Welcome to Vuo. Get ready to create!

2 Quick Start

2.1 Install Vuo

• Go to https://vuo.org/user and log in to your account

• Click the “Subscriber” tab

• Under the “Vuo Editor” section, download the Vuo Editor

• Uncompress the ZIP file (double-click on it in Finder)

• Move the Vuo Editor application to your Applications folder

Revised April 24, 2014

http://vuo.org/support
http://vuo.org/features
http://vuo.org/roadmap
https://vuo.org/contact
https://vuo.org/user

2 Quick Start Page 6 of 43

2.2 Create a composition

Let’s make a simple composition. It will just pop up a window with the text “Hello World!”

1. Open the Vuo Editor application in your Applications folder and the Vuo Editor will appear. The

Node Library will be on the left, and a blank canvas will be on the right.

2. In the Node Library, find the Fire on Start node. You can do this by scrolling down the Node

Library list or typing theword, “fire” into the search bar on the top of theNode Library list. Drag

it onto the canvas. (Note: If your Node Library lists your nodes as beginning with “vuo.”, go to

the bottom of the Node Library and click on the Titles button. This will now show you the

nodes listed by title.)

3. In the Node Library, find the Display Console Window node. If you clear out the search bar,

you can scroll down the Node Library to find it or use the search bar again. Drag it onto the

canvas.

4. Draw a cable from the started port of the Fire on Start node to thewriteLine port of theDisplay

Console Window node. You can do this by clicking and holding over the port you’d like to start

from, then dragging the cable to the port you’d like to connect to and letting go.

5. Double-click on the writeLine port of the Display Console Window node. This pops up a text

box.

6. Type “Hello world!” in the text box and hit Return. This closes the text box.

Revised April 24, 2014

3 The Basics Page 7 of 43

2.3 Run the composition

Now let’s run your composition.

1. Click the Run button (or go to Run > Run).

2. When you’re finished admiring the “Hello world!” text, click the Stop button (or go to Run >
Stop).

3 The Basics

3.1 The ‘flow’ or execution of events

Vuo compositions are driven by events. Events are what cause nodes in your composition to execute.

Without events, your composition won’t do anything!

Events come from trigger ports. Based on how you connect these trigger ports to other nodes, you

have complete control over the timing of events in your composition.

The trigger port has spikes on its left side, to indicate that it fires events. Ka-pow!

One example of a trigger port is the Fire Periodically node’s fired port. Another is the Fire on Start

node’s started port.

...
trigger port

...
trigger port

Nodes with trigger ports

See the chapter Controlling the Flow of Events for more detail on event flow.

Revised April 24, 2014

3 The Basics Page 8 of 43

3.2 Nodes, ports, and cables

The rectangular boxes in your composition are nodes. Each node performs a task, like counting num-

bers or displaying a window or periodically firing events. Nodes are your tools for creating — they’re

the building blocks of compositions.

When you look at a node, the title (large text along the top) tells you the task that the node performs.

You can getmore details by hovering themouse over the node. After amoment, this pops up a popover

(tooltip) that shows an in-depth description of the node.

Nodes talk to each other by sending data and events through cables plugged into ports. Data and

events flow from the output port of one node, through a cable, to the input port of another node.

..

A node in Vuo is analogous to a patch in

Quartz Composer. Unlike Quartz Com-

poser, which typically executes each

patch once per video frame, nodes in

Vuo can be executed whenever they re-

ceive an event—whether it’s 60 per sec-

ond, 44,100 per second, or 1 per year.

.

Note for

Quartz Composer users

..
A node in Vuo is analogous to a class in-

stancemethod that takes a list of inputs

and returns a list of outputs.

.

(); Note for

text programmers

An example composition, DisplayImage.vuo (under vuo.image), with three nodes and two cables

In the composition above, an event from the Fire on Start node travels to the Get Image node, which

fetches the image from a specific URL. The image data and event then travel to the input port image

of the Render Image to Window node. This node will display the image in a window.

3.2.1 Sending data and events between nodes

All cables carry events. In the composition above, an example of a cable that carries an event-only is

the cable into the Get Image node, while an example of the a data-and event cable is the cable from

Get Image to Render Image to Window. We’ll talk about differences in input ports in the section on

How events travel through a node.

Event-only cables are thin. Data-and-event cables are thicker than event-only cables.

Revised April 24, 2014

3 The Basics Page 9 of 43

Multiple data-and-event and event-only cables can be connected to an output port.

..

Unlike Quartz Composer, you may cre-

ate as many or few windows as you like.

This composition will create 4 separate

windows.

.

Note for

Quartz Composer users

Multiple event-only cables, but only one data-and-event cable, can be connected to an input port.

You can connect a data-and-event output port to a data-and-event input port, but you can’t directly

connect a data-and-event output port to an event-only input port without a special type converter.

See the section Types of information. You can connect an event-only output port to any type of data-

and-event input port.

Revised April 24, 2014

3 The Basics Page 10 of 43

3.3 Creating a composition

The easiest way tomake a composition is in the Vuo Editor. Once you’ve installed Vuo (see the chapter

Quick Start), you can find the Vuo Editor in your Applications folder.

See the chapter The Vuo Editor for more information on the Vuo Editor.

The example composition, Count.vuo, under the vuo.math examples

Above is a composition that counts. It displays a blank window, then, every one second, it writes a

number upon the window: 1, 2, 3, 4, ... etc. Let’s take a closer look.

The Fire Periodically, Count, and Display Console Window nodes each perform a separate task. In-

formation always flows from the left side to the right side of a node. Inputs are on the left, outputs

on the right. integer → text is a type converter; its job is to convert (or translate) information from

one type to another. Types of data are covered in the chapter Understanding Data.

This composition begins with the Fire Periodically node and ultimately flows to the Display Console

Window node. Information travels between nodes by exiting output ports, flowing through cables,

and entering input ports.

The Fire Periodically node’s only task is to tell other nodes when it’s time to perform their function.

It does this by firing events out of its fired port. How often it fires an event is dictated by the value

present at its seconds port. It sends events out its fired port, then along the cable to the Count node’s

increment port.

When an event from the Fire Periodically node flows through the cable and hits the Count node, it

tells Count that it’s time to execute. The Count node keeps track of a count. When an event hits its

increment port, the node adds 1 to its count. The count starts out at 0, becomes 1 after the first event,

2 after the second event, and so on. The Count node sends the new count and the event out its count

port, along the cable, to the integer port of the integer → text type converter.

When you take a cable from count you will see that the writeLine is highlighted. This indicates that

although the two nodes process different types of data, the Editor will insert a type converter for you.

The integer→ text type converter takes the value in its integer port (a number) and converts it to text.

That’s because the next node, Display Console Window, only works with text, not numbers.

The final node, Display Console Window, creates a blank white window and writes the count upon it.

In summary:

Revised April 24, 2014

3 The Basics Page 11 of 43

• Fire Periodically node fires events every 1 second, which flow along the cable into Count.

• Count receives the events and outputs these events plus their corresponding numbers.

• integer → text converts the numbers to text and sends the events and numbers into Display

Console Window

• Display Console Window creates a blank window and displays the numbers upon it, every one

second.

3.4 Live coding

In Vuo you can change your composition while it’s running. We’ll use the example composition,

Count.vuo, explained above. Start the composition again. While it’s running, click on the cable from

the fired port to the Count node’s increment port. This will highlight it.

Either right click, hit Delete or use the Editor’s menu Edit > Cut selected cable or Edit >
Delete selected cable to delete the cable. Notice how the composition stops outputting the

count, since there are no events going into the Count node.

Nowdrawanewcable from theFiredport to thedecrementport. Notice how the composition resumes

and starts decrementing the count, all while the composition is running.

You can change data, rearrange cables, and even add nodes while a composition is running.

3.5 Viewing example compositions

One way to learn how nodes work is to view Vuo’s example compositions. To find the example com-

positions, use File > Open Example to see a list of node sets. You can then hover over a node set

to see relevant examples. Hovering over vuo.console, for example, will display the example compo-

sitions CalculateTip.vuo and HelloWorld.vuo. Clicking on an example composition will open it in the

Vuo Editor.

To learn more about an example composition, open the composition and go to Edit > Composition
Information. This displays the composition’s description, which includes instructions on how you

can interact with it.

To see a list of descriptions for all example compositions for a node set, look in the node set docu-

mentation. In the Editor’s Node Library (Window > Show Node Library), find a node that belongs

to that node set. For example, to learn more about the vuo.math example compositions, use the key-

word “math” in the Node Library search window to find the nodes in that node set, or click on a node

in the library that contains “math” in its class name. Clicking on any node in the node set will bring

up a node popover that will contain a link to the node set documentation. Using that link will dis-

play some general information about that node set, as well as descriptions of the associated example

compositions.

Revised April 24, 2014

4 Controlling the Flow of Events Page 12 of 43

4 Controlling the Flow of Events

4.1 How events travel through a node

To understand how to control what happens in your composition, you first need to understand what

happens to events when they arrive at a node, and how events travel to other nodes. This means

understanding input ports, refresh ports, output ports and done ports.

4.1.1 Input ports

...

input port

.

input port

.
input port

An input port is the location on the left side of the node where you can enter data directly, connect

a data-and-event cable, or connect an event-only cable. When an event arrives at an input port, it

causes the node to execute and perform its function based on the data present at the node’s input

ports.

Some nodes, like the two nodes shown below, have input ports that block an event. This means the

node will execute, but the event associated with that data won’t travel through any output ports, with

the exception of the done port. Done ports are explained in the Output ports section. Event blocking

is useful when you want part of your composition to execute in response to events from one trigger

port but not events from another trigger port, or when you’re creating a feedback loop. (See later in

this chapter, Controlling when nodes execute, for more information.)

...
event wall

.

event door
...

event wall

Ports that always block events have a solid semi-circle (like the which port above) or a solid chevron

(like the start port above). This is called an event wall. The node must receive an event from another

port without an event wall for the results of the node’s execution to be available to other nodes. The

event itself, even it arrives via an input port with an event wall, is available via the done port.

Revised April 24, 2014

4 Controlling the Flow of Events Page 13 of 43

Tip: The event wall is visually placed inside the node to indicate that the event gets blocked inside

the node (as it executes) — rather than getting blocked before it reaches the node.

Ports that sometimes block events have a broken semi-circle (like the option1 port above) or chevron.

This is called an event door. Event doors are useful when you want to take events from a trigger port

and filter some of them out or route them to different parts of the composition. For example, in the

Select Input node, the value at the which port will determine whether the data or data-and-event at

option1 or option2 will be transmitted to the out port.

4.1.1.1 Refresh ports Every node has a built-in event-only input port called the refresh port. The

purpose of this port is to execute the node without performing any port-specific function.

Tip: To determine what is a port-specific function, look at the input port. If the input port uses a

present-tense verb phrase, such as increment orwriteLine, then the port has a port-specific function,

and the refresh node will not execute that function. If the input is a noun, such as value, channel, x,

y, etc., then the node will execute using those values when an event arrives via the refresh port.

...

refresh port

A composition, CountSometimes.vuo, using a refresh port

For example, this composition above shows how you can use the refresh port to get the Count node’s

current count without incrementing or decrementing it. When the lower Fire Periodically node fires

an event, Display Console Window writes the incremented count. When the upper Fire Periodically

node—which is connected to theCount node’s refresh port— fires an event, the count stays the same.

Display Console Window writes the same count as before.

Revised April 24, 2014

4 Controlling the Flow of Events Page 14 of 43

An example composition, CountandHold.vuo (under vuo.hold), using a Hold Value node

On other nodes, like Hold Value, the refresh port is the only input port that transmits events to any

output ports. The Hold Value node lets you store a value during one event and use it during later

events. This composition shows how you can use aHold Value node to update a value every 1 second

and write it every 5 seconds.

When the left Fire Periodically node executes, the count, as a data-and-event, is transmitted to the

Hold Value node. TheDisplay ConsoleWindow node doesn’t execute because, when the event arrives

at the Hold Value node, it is blocked.

When the upper Fire Periodically node executes, the count stored in the Hold Value node travels to

the Display Console Window node and gets written.

Tip: Refresh ports are useful for allowing event flow out of nodes that have event walls. The event

entering the refresh port can travel to downstream nodes, while an event encountering an event wall

cannot.

4.1.2 Output ports

When an event executes a node, the event can travel to downstream nodes using the output ports.

Like input ports, output ports can be data-and-event or event-only.

...

data-and-event output port

...

event-only output port

4.1.2.1 Trigger ports A trigger port is a special kind of output port. Trigger ports can fire (origi-

nate) events. However, trigger ports never transmit events that came into the node through an input

port, nor do they cause any other output ports to emit events. When a trigger port fires, no event

comes out the done port.

...
trigger port

Some trigger ports fire events in response to things happening in the world outside your composition.

For example, the Receive Mouse Moves node’s trigger port fires an event each time the mouse is

moved. The Play Movie node’s trigger port fires a rapid series of events (for example, 30 per second),

Revised April 24, 2014

4 Controlling the Flow of Events Page 15 of 43

so that you can display images in rapid sequence as a movie. Similarly, the Render Scene to Window

node’s requestedFrame trigger port fires a rapid series of events, so that you can use these events to

display scenes in rapid sequence as an animation.

Other trigger ports fire events in response to things happening within the composition. For example,

the Fire on Start node’s trigger port fires an event when the composition starts. The Fire Periodically

node’s trigger port fires events at a steady rate while the composition is running. A node’s trigger port

can even fire in response to an event received by the node, as happens with the Spin Off Event node.

(However, this is a different event than the one that was received by the node. For more information,

see the section on Executing nodes in the background.)

Nodes that contain trigger portswill execute as described in the Input ports sectionwhen they receive

an event, including transmitting events through the done port.

4.1.2.2 Doneports Every nodehas a built-in event-only output port called thedoneport. The done

port outputs an event every time the node executes — even if the incoming event was blocked by an

event wall or event door.

...

done port

Tip: Done ports are useful for allowing event flow out of nodes that have no other output ports.

4.2 Controlling when nodes execute

A composition can be as simple as a straight line of nodes, one executing after the other. But it doesn’t

have to be. A composition can have cables branching off in different directions, allowing multiple

nodes to execute simultaneously. It can decide to execute some nodes and not others. It can have

feedback loops.

..

Quartz Composer provides less control

than Vuo does over when patches exe-

cute. Patches typically execute in sync

with a framerate, not in response to

events. Patches typically execute one

at a time, unless a patch has been spe-

cially programmed to do extra work in

the background.

.

Note for

Quartz Composer users

..This section is about Vuo’s mechanisms

for control flow and concurrency.
.

(); Note for

text programmers

4.2.1 Feedback loops

You can use a feedback loop to do something repeatedly or iteratively. An iteration happens each

time a new event travels around the feedback loop.

Revised April 24, 2014

4 Controlling the Flow of Events Page 16 of 43

A composition, CountWithFeedback.vuo, showing a feedback loop.

The above composition prints a count upon a console window: 1, 2, 3, 4, . . .

The first time the Fire Periodically node fires an event, the inputs of Add are 0 and 1, and the output

is 1. The sum, as a data-and-event, travels along the cable to the Hold Value node. The new value is

held at the newValue port, and the event is blocked, as you can see from its event wall; Hold Value

doesn’t transmit events from its newValue port to any output ports.

The second time the Fire Periodically node fires an event, the inputs ofAdd are 1 (from theHold Value

node) and 1. The third time, the inputs are 2 and 1. And so on.

..

The above composition is illegal in Vuo — don’t do this! The reason is that any event from the Fire

Periodically node would get stuck forever traveling in the feedback loop from the Add node’s sum

port back to the item1 port, and the composition would come to a standstill. Because there’s no

event wall in the feedback loop, there’s nothing to stop the event. Every feedback loop needs a node

like Hold Value to block events from looping infinitely.

Revised April 24, 2014

4 Controlling the Flow of Events Page 17 of 43

4.2.2 Logic Nodes

Vuo has nodes that can evaluate whether a statement is True or False. True and false are called

Boolean values.

The following is an example of a node that outputs a Boolean value, by determining if “a” is less than

“b.”

You can execute downstreamnodes based onwhether an output is true or false. Logic nodes are often

used with nodes that route data, where the logic node acts as an “if” and the node that routes data as

a “then do this, or if not, do that.”

Tip: With a type converter node, True can be converted to “1” and False can be converted to “0.”

4.2.3 Routing data with select nodes

A Select Input node lets you select a value from different input ports and route it to the output. A

Select Output node lets you select an input value to route to different output ports. There are two

different classes of Select nodes. The first uses the values 1 and 2 to control how the node func-

tions, while the second uses Boolean true or false values. The first set uses a class name beginning

with “vuo.select.in.2.Vuo” or “vuo.select.out.2.Vuo” while the second set uses a class name beginning

with “vuo.select.in.Vuo” or vuo.select.out.Vuo.”With these two different classes, you can control your

composition based on what makes sense with respect to the rest of your composition.

..

Vuo’s Select Input node is similar to

Quartz Composer’s Multiplexer patch.

Vuo’s Select Output node is similar

to Quartz Composer’s Demultiplexer

patch.

.

Note for

Quartz Composer users

..
Vuo’s Select Input and Select Output

are similar to if/else or switch/case
statements.

.

(); Note for

text programmersWhen the Select Input node executes, it looks at what is present at the which port and outputs the

value found at the corresponding port below it. For example, if the value “1” is present at the which

port, whatever value is present at the option1 port will be output.

Notice that the which port has an event wall, as shown by the solid semi-circle. In order to get the

node to output an event through the out port, you need to send an event to the selected input port or

the refresh port. It won’t work if you just send an event to the which port.

Revised April 24, 2014

4 Controlling the Flow of Events Page 18 of 43

Here is an example of the node using Boolean values to control how it functions:

Here is a composition using both a logic node and a Select Input node. The composition will write

“The count is less than five” four times, before “The count is 5 or more” begins to be written.

A Select Output node lets you route an input value to one of several outputs. Similar to the Select

Input, you pick an output port using thewhich input port. Here “1” will send the information from the

in to option1, while an input of “2” will send the information to option2. You can see here that it is

important to notice if thewhich is expecting a Boolean “True” or “False,” or if it is expecting a number

“1” or “2.” Vuo provides switches that use both numbers and Boolean values.

A Select Latest node lets you select the latest data and event to arrive at the node. If an event comes

into both option1 and option2, then option1 is used.

4.2.4 Executing nodes in parallel

When you run a composition in Vuo, multiple nodes can execute at the same time. This takes advan-

tage of your multicore processor to make your composition run faster.

Revised April 24, 2014

4 Controlling the Flow of Events Page 19 of 43

In this composition, the twoCount nodes are independent of each other, so it’s OK for them to execute

at the same time. When the Fire Periodically node fires an event, the upperCount nodemight execute

before the lower one, or the lower one might execute before the upper one, or they might execute at

the same time. It doesn’t matter! What matters is that the Add node waits for input from both of the

Count nodes before it executes.

The Add node executes just once each time Fire Periodically fires an event. The event branches off

to the Count nodes and joins up again at Add.

If the Fire Periodically node fires an event, and then fires a second event before the first has made it

through the composition, then the second event waits. Only when the Display ConsoleWindow node

has finished executing for the first event do the Count nodes begin executing for the second event.

In this composition, the Add node executes each time either Fire Periodically node fires an event. If

one of the Add node’s inputs receives an event, it doesn’t wait for the other input. It goes ahead and

executes.

If the two Fire Periodically nodes fire an event at nearly the same time, then the Count nodes can

execute in either order or at the same time. But once the first event reaches theAdd node, the second

Revised April 24, 2014

4 Controlling the Flow of Events Page 20 of 43

event is not allowed to overtake it. (Otherwise, the second event could overwrite the data on the cable

from Add to Display Console Window before the first event has a chance to reach Display Console

Window.) The second event can’t execute Add or Display Console Window until the first event is

finished.

4.2.5 Executing nodes in the background

An example composition, LoadImagesAsynchronously.vuo (under vuo.event), has nodes execute in the background

This example shows how a composition can do some work in the background (asynchronously). It

displays one image while downloading another image from the internet, then displays the second

image.

The Spin Off Event node is what allows the image to download in the background. When an event

reaches the Spin Off Event node, the Spin Off Event node fires a new event. Because it’s a new event

instead of the same old event, other parts of the composition can go on executing without having to

wait on the event.

Let’s take a more detailed look. When the Fire on Start node fires an event, the event travels to the

Spin Off Event node (where it stops) and through the upper Get Image node, Select Latest, Place

Image in Scene, and Render Scene to Window. All of these nodes execute without waiting for the

lower Get Image node. Meanwhile, the Spin Off Event node fires a new event, the lower Get Image

node downloads the image, and eventually the new event travels onward through Select Latest and

Render Image to Window.

Revised April 24, 2014

4 Controlling the Flow of Events Page 21 of 43

4.2.6 Executing nodes at a steady rate

An example composition, Count and Hold (under vuo.hold), showing nodes executing at different rates

This composition writes a count upon the console window every 5 seconds. The count updates every

1 second.

The Hold Value node prevents the count from being written each time it’s updated by the 1-second

Fire Periodically node.

(Note: Every 5 seconds, when the two Fire Periodically nodes fire at nearly the same time, it’s unpre-

dictable whether the count will be written before or after it’s incremented.)

4.2.7 Summary

You can control how your composition executes by controlling the flow of events. The way that you

connect nodes with cables — whether in a straight line, a feedback loop, or branching off in different

directions— controls the order in which nodes execute. Theway that you fire and block events—with

trigger ports, with Select nodes, and with other nodes with event walls and doors — controls when

different parts of your composition will execute.

Each event that’s fired from a trigger port has its own unique identity. The event can branch off along

different paths, and those paths can join up again at a node downstream. When the same event joins

up, the joining node will wait for the event to travel along all incoming paths and then execute just

once. But if two different events come into a node, the node will execute twice. So if you want to

make sure that different parts of your composition are exactly in sync, make sure they’re using the

same event.

Revised April 24, 2014

5 Understanding Data Page 22 of 43

4.3 Controlling the buildup of events

What if a trigger port is firing events faster than the downstream nodes can process them? Will the

events get queued up and wait until the downstream nodes are ready (causing the composition to

lag), or will the composition skip some events so that it can keep up? That depends on the trigger

port’s event throttling setting.

Each trigger port has two options for event throttling: enqueue events or drop events. If enqueueing

events, the trigger port will keep firing events regardless of whether the downstream nodes can keep

up. If dropping events, the trigger port won’t fire an event if the event would have to wait for the

downstream nodes to finish processing a previous event (from this or another trigger port).

Each of these options is useful in different situations. For example, suppose you have a composition

in which a Play Movie node fires events with image data and then applies a series of image filters. If

you want the composition to display the resulting images in real-time, then you’d probably want the

Play Movie node’s trigger port to drop events to ensure that themovie plays at its original speed. On

the other hand, if you’re using the composition to apply a video post-processing effect and save the

resulting images to file, then you’d probably want the trigger port to enqueue events.

When you add a node to a composition, each of its trigger ports may default to either enqueueing or

dropping events. For example, the Play Movie node’s trigger port defaults to dropping events, while
each of the Receive Mouse Clicks node’s trigger ports defaults to enqueueing events.

In the Vuo Editor, you can right-click on a trigger port and go to the “Set Event Throttling” menu to

view or change whether the port enqueues or drops events.

5 Understanding Data

5.1 Setting a constant value for a port

...

constant value

Instead of passing data through a cable, you can give a data-and-event input port a constant value.

A constant value is “constant” because, unlike data coming in from a cable, which can change from

time to time, a constant value remains the same unless you edit it.

Revised April 24, 2014

5 Understanding Data Page 23 of 43

For many types of data (such as integers and text), you can edit a constant value by double-clicking

on the constant value attached to an input port. This will pop up an input editor that lets you change

the constant value. (If nothing happens when you double-click on the constant value, then the Vuo

Editor doesn’t have an input editor for that data type. To change the data for the input port, you have

to connect a cable.)

...

input editor

When using an input editor to edit text, you can enter text that contains multiple lines (line breaks)

by composing your text in a basic text editor (such as TextEdit), then copying and pasting it into the

input editor.

If you edit a constant value for a node’s input port, the node will use the new port value the next time

it executes. Setting a constant value won’t cause the node to execute.

5.2 Using the default value of a port

When you add a node to a composition, each input port has a preset constant value called its default

value. The default value for an input port is the same for all nodes of a given type. For example, the

increment port of all Count nodes defaults to 1. The port stays at its default value until it receives an

event.

If you disconnect a data-and-event cable to a port that previously had a constant value, then the port

goes back to its previous value. If you did not set a constant value, it goes back to its default value.

5.3 Sending the same data to multiple ports

What if you want to set the same value on multiple input ports? For example, suppose you want to

draw several images, all having the same height. One way to accomplish this would be to go one by

one to each node’s height input port, open the input editor, and set it to the height you want. But

Revised April 24, 2014

5 Understanding Data Page 24 of 43

what if you later decide to change the height? It would be better to set the height in one place and

have it affect all nodes.

You can do this with the Share Value node, as illustrated here. When the Share Value node receives

an event, it sends the value in its input port (100) through its output port to all connected nodes.

5.4 Using drawers

Some nodes are able to use a list of inputs. These nodes have drawers. The initial configuration of a

drawer has two inputs, but you can change the number of inputs by dragging on the handle (the bar

beneath the drawer), or by right-clicking and selecting Add Input Port or Remove Input Port.

In the following composition, the nodeMultiply and the node Append use drawers.

...

drawer

.

drawer

A composition that takes the height, length, and width of a box and calculates its volume

Like a node, a drawer will only execute if it has an event coming into one of its input ports. (To help

you remember this, drawers have the same background color as nodes.) If a node isn’t getting any

input from its attached drawer, make sure there’s a cable connected to at least one of the drawer’s

input ports.

Revised April 24, 2014

5 Understanding Data Page 25 of 43

5.5 Storing information

Some nodes have state. They remember information from previous times they were executed. An

example of a stateful node isCount. If aCount node is told to increment, its state (the count) changes.

...

upside-down cable

indicating stateful node

Stateful nodes have a thick bar along the bottom that looks like an upside-down data-and-event ca-

ble. This symbolizes that the node’s state data is kept after the node executes, and used next time it

executes.

A stateless node doesn’t remember anything about previous times it was executed. If you give it the

same inputs, it’ll always give you the same outputs.

Stateless nodes have a thin bottom border.

5.6 Types of information

Nodes are sensitive to data type. Vuo works with various types of data, such as integer (whole) num-

bers, real (decimal) numbers, Boolean (logical) values, text, 3D points, images, and more.

For example, the Count Characters node’s text input port has data type text, and its characterCount

output port has data type integer. If you see a Count Characters node that has a cable connected to

its characterCount port, then you can know that the port at the other end of the cable must also have

type integer.

Revised April 24, 2014

5 Understanding Data Page 26 of 43

5.6.1 Converting between types

What if you want to connect the Count Character node’s integer output port to a text input port? If

you start to drag a cable from the characterCount port, any ports in the composition that the cable

can connect to are highlighted. This includes not just ports of type integer, but also ports of type text.

If you drag the cable to a text input port and release the mouse, then a type converter node will be

automatically added to convert the integer data to text data.

..

The Quartz Composer equivalent to

a type-converter is represented as a

darker red line in QC. The benefit of ex-

posing these conversions is greater con-

trol over how your data is interpreted.

.

Note for

Quartz Composer users

A type converter node is just a node that happens to have a single input port of one data type and

a single output port of another data type. Whenever you want to connect a port of one data type to

a port of another data type, you can try drawing the cable to find out if any type converters can be

inserted automatically. Or you can search the Node Library for a node that has an input port of the

type that you want to convert from and an output port of the type that you want to convert to.

For some types, there’s more than one way to do the conversion. For example, if you want to convert

from a real number to an integer, you can round the real number to the nearest integer, round it down

to the integer below, or round it up to the integer above. If you try to connect a cable from a real-

number output port to an integer input port, a menu will pop up allowing you to pick the conversion

you want to use.

Vuo has a special set of type converters for data-and-event cables to remove (discard) the data from

an event. If you want to convert a data-and-event cable to an event-only cable, use a Discard Data

from Event type converter.

You can see type converters used in previous compositions in this manual, such as in the section

Creating a composition with the Count composition.

An example composition, Check Sms Length (under vuo.text), showing a type converter discarding data from an event

Revised April 24, 2014

5 Understanding Data Page 27 of 43

5.6.2 Using generic types

Some nodes can work with many different types of data. For example, a Hold Value node could hold

an integer, an image, a 3D point... or really, any type of data. Rather than cluttering up the Node

Library with a separate Hold Value node for each data type, Vuo lists a single Hold Value node that

can be made to work with any type.

When you drag aHold Value node from the Node Library onto the canvas, each of the node’s ports has

a generic data type. This means that the data type for these ports hasn’t been decided yet. Right now,

each of theHold Value node’s ports has the potential to connect to any type of port in the composition.

You can see that a port is generic by hovering over it with themouse and reading the port popover that

pops up.

When you connect one of the Hold Value node’s ports to a non-generic port, then all of the Hold

Value node’s generic ports change to non-generic ports with the same type as the connected port.

For example, if you connect the Hold Value node’s heldValue port to a Count Character node’s text

port, then all of the Hold Value node’s generic ports change to text ports, matching the text port.

Another way to change a generic port to a non-generic port is to right-click on the port, go to the Set
Data Typemenu that pops up, and choose a data type.

If you want to change the port back to generic, you can right-click on the port and select the Revert
to Generic Data Typemenu item. (This will delete any cables between non-generic ports and ports

changed back to generic.)

Some generic nodes can work with several different types of data, but not all types. For example, the

Add Points node can work with with 2d points, 3d points, and 4d points, but not text or images. When

you drag an Add Points node from the Node Library onto the canvas, its sum port is generic, but it can

only connect to a port of type 2d point, 3d point, or 4d point. You can see the list of compatible types

for a generic port by looking at the port popover.

Some generic nodes are automatically turned into non-generic nodes when first created. For exam-

ple, when you drag an Add node from the Node Library onto the canvas, its ports are automatically

changed from generic to real numbers, because real numbers are usually a suitable choice for the

Add node. But if you want to work with integers instead, you can use the Revert to Generic Data
Typemenu and then the Set Data Type to change the ports to integers.

You can connect a generic port to another generic port, as long as they work with compatible types of

data. For example, you can connect a Hold Value node to an Add node, since the Hold Value node is

compatible with any type. However, you can’t connect an Add node to an Add Points node, since the

Add node is only compatible with integers and reals while the Add Points nodes is only compatible

with 2d points, 3d points, and 4d points.

Revised April 24, 2014

6 Interfacing with Applications Page 28 of 43

A generic node can have ports that each work with a different generic type. For example, the Get

MessageValuesnode in the vuo.oscnode set has several output portswith independent generic types.

You can change one output port’s generic type to integer and another output port’s generic type to

text, for example. You can see if a node’s generic ports use the same generic type or different generic

types by looking at theport popover. Theport popover displays aname for theport’s generic type, such

as “generic #1” or “generic #2”. If two generic ports have the same name for their type (including if

they’re on separate nodes connected by cables), then changing the generic type of one port will also

change the other port. If two generic ports have different names for their type, then changing one

will not affect the other.

5.7 Interacting with the environment

Some nodes interact with the world outside the composition — such as windows, files, networks, and

devices.

Nodes that bring information into the composition from the outside world and/or affect the outside

world are called interface nodes. An example of an interface node is the Get Image node, which can

download an image from the Internet. Another example is the Display Console Window node, which

reads text typed in a console window and writes text to that window.
..

Instead of Vuo’s interface and non-

interface nodes, Quartz Composer has

an execution mode for each patch:

provider, consumer, or processor. A

patch’s execution mode not only indi-

cates how it interacts with the outside

world, but also controls when it exe-

cutes and whether it can be embedded

in macro patches.

.

Note for

Quartz Composer users

Interface nodes have three radio arcs in the top-right corner, symbolizing that they send or receive

data with the world outside your composition.

6 Interfacing with Applications

Some applications allow you to use Vuo compositions as plugins — making it possible to customize

or add to the application’s behavior. For example, an application for video production may let you

define a video effect by creating a Vuo composition that alters an image. The way that the application

communicates with the composition is through published ports.

Revised April 24, 2014

6 Interfacing with Applications Page 29 of 43

6.1 Published ports

A published port is an input port or output port for the composition as a whole. A published input port

receives events and possibly data from somewhere outside the composition and passes it along to

input ports on nodes inside the composition. A published output port takes events and possibly data

from output ports inside the composition and sends it to somewhere outside the composition.

In the Vuo Editor, published ports appear in sidebars on the left and right of the composition canvas.

(These sidebars are hidden by default if a composition has no published ports. To display them, go to

Window > Show Published Ports.)

Here’s a composition with a published input port called publishedIncrement and a published output

port called publishedCount:

6.2 Protocols

If you’re going to use a composition as a plugin in some application, usually the application expects

the composition to have certain published input and output ports. For example, an application that

supports plugins for video effects would expect the composition to have a published input ports that

receives an image a published output port that sends an altered image. To guarantee that your com-

position’s published ports match what the application is expecting, you can use a protocol.

A protocol is a predetermined set of published ports with certain names and data types. Vuo supports

the following protocols:

• Image Filter— Alters an image.

– Published input ports:

Revised April 24, 2014

7 The Vuo Editor Page 30 of 43

* image (Image) — The original image.

* time (Real) — A number that changes over time, used to control animations or other

changing effects. When previewing the composition in the Vuo Editor, this number

is the time, in seconds, since the composition started running. In other applications,

this number should be described in their instructions for creating plugins.

– Published output ports:

* outputImage— The altered image.

• Image Generator— Creates an image.

– Published input ports:

* width (Integer) — The requested width of the image, in pixels.

* height (Integer) — The requested height of the image, in pixels.

* time (Real) — A number that changes over time, used to control animations or other

changing effects. When previewing the composition in the Vuo Editor, this number

is the time, in seconds, since the composition started running. In other applications,

this number should be described in their instructions for creating plugins.

– Published output ports:

* outputImage — The created image. Its width and height should match the width

and height published input ports.

7 The Vuo Editor

7.1 The Node Library

When you create a composition, your starting point is always theNode Library (Window > Show Node
Library). The node library is a tool that will assist you in exploring and making use of the collection

of Vuo building blocks (“nodes”) available to you as you create your artistic compositions.

..

Many of the same shortcuts fromQuartz

Composer alsowork in Vuo. As an exam-

ple, Command + Return opens theNode
Library, and Command + R begins play-

back of your composition.

.

Note for

Quartz Composer users

Because you will be working extensively with the node library throughout your composition process,

we have put a great deal of effort intomaximizing its utility, flexibility, and ease of use. It has been de-

signed to jump-start your Vuo experience—so that youmay sit down and immediately begin exploring

and composing, without having to take time out to study reams of documentation.

When you open a new composition, the Node Library is on the left. The Node Library shows all the

nodes that are available to you. In the Node Library, you can search for a node by name or keyword.

You can see details about a node, including its documentation and version number.

Revised April 24, 2014

7 The Vuo Editor Page 31 of 43

7.1.1 Docking and visibility

By default, the node library is docked within each open composition window. The node library may

be undocked by dragging or double-clicking its title bar. While undocked, only a single node library

will be displayed no matter how many composition windows are open.

The node library may be re-docked by double-clicking its title bar.

The node library may be hidden by clicking the X button within its title bar. Once hidden, it may be

re-displayed by selecting Window > Show Node Library or using Command + Return. The same

command or shortcut, Command + Return, will put your cursor in the node library’s search window.

Whether you have left your library docked or undocked, visible or hidden, your preference will be

remembered the next time you launch the Vuo Editor.

7.1.2 Node names and node display

Eachnodehas twonames: a title and a class name. The title is a quick description of a node’s function;

it’s the most prominent name written on a node. The class name is a categorical name that reveals

specific information about a node; it appears directly below the node’s title.

...

title

.

class name

Let’s use the Count node as an example. “Count” is the node’s title, which reveals that the node

performs the function of counting. The class name is “vuo.math.count”. The class name reveals the

following: Team Vuo created it, “math” is the category, and “count” is the specific function (and title

name).

Depending on your level of familiarity with Vuo’s node sets and your personal preference, you might

wish to browse nodes by their fully qualified family (“class”) name (e.g., “vuo.math.add”) or by their

more natural human-readable names (“Add”).

You may select whichever display mode you prefer, and switch between the modes at your conve-

nience; the editor will remember your preference between sessions. You can toggle between node

titles and node class names by using the buttons at the bottom of the Node Library or by View>Node
Library> Display by class or Display by name.

Revised April 24, 2014

7 The Vuo Editor Page 32 of 43

7.1.3 Node Popovers

The node library makes the complete set of Vuo nodes available for you to browse as you compose.

By hovering themouse cursor over a node in the library, you will be presented with a popover (tooltip)

describing the general purpose of the node as well as details that will help you make use of it.

If you are interested in exploringnewopportunities, this is an idealway to casually familiarize yourself

with the building blocks available to you in Vuo.

7.1.4 Finding Nodes

In the top of the Node Library there is a search bar. You can type in part of a node name or a keyword

and matching nodes will show up in the Library. Pressing Esc while in the search bar will clear out

your selection and show the entire library, as will deleting your search term.

Your search termswill match not only against the names of relevant nodes, but also against keywords

that we have specifically assigned to each node to help facilitate the transition for any of you who

might have previous experience with other multimedia environments or programming languages.

For example, users familiar withmultiplexersmight type “multiplex” into the VuoNode Library search

field to discover Vuo’s “Select Input” family of nodes with the equivalent functionality; users with a

background in textual programming might search for the term “string” and discover the Vuo “Text”

node family. Users don’t have to know the exact node title or port name. To find a node with a trigger

port, for example, go to the Node library and type in the keywords “events,” “trigger,” or “fire.”

If you do not see a node, particularly if you have received it from someone else, review the procedures

under Installing a node.

7.2 Working on the canvas

7.2.1 Putting a node on the canvas

The node library isn’t just for reading about nodes, but for incorporating them into your compositions.

Once you have found a node of interest, you may create your own copy by dragging it straight from

the node library onto your canvas, or by double-clicking the node listing within the library.

Not a mouse person? Navigating the library by arrow key and pressing Return to copy the node to

your canvas works just as well.

You may copy nodes from the library individually, or select any number or combination of nodes from

the library and add them all to your canvas simultaneously with a single keypress or mouse drag —

whatever best suits your work style.

Revised April 24, 2014

7 The Vuo Editor Page 33 of 43

7.2.2 Drawing cables to create a composition

You can create cables by dragging from an output port to a compatible input port or by dragging

backwards from an event-only input port to a compatible output port.

Compatible ports are those that output and accept matching or convertible types of data. Compat-

ible ports are highlighted as you drag your cable, so you know where it’s possible to complete the

connection.

If you complete your cable connection between two ports whose data types are not identical, but that

are convertible using an available type converter (e.g., vuo.math.round for rounding real numbers to

integers), that type converter will be automatically inserted when you complete the connection.

Sometimes existing cablesmay also be re-routed by dragging (or “yanking”) themaway from the input

port to which they are currently connected. It is possible to yank the cable from anywhere within its

yank zone. You can tell where a cable’s yank zone begins by hovering your cursor near the cable. The

yank zone is the section of the cable with the extra-bright highlighting. If no yank zone is highlighted,

you will need to delete and add back the cable.

7.2.3 Copying and pasting nodes and cables

You can select one or more nodes and copy or cut them using the Edit > Copy and/or Edit > Cut
menu options, or their associated keyboard shortcuts. Any cables or type converters connecting the

copied nodes will automatically be copied along with them.

You can paste your copied components into the same composition, a different composition, or a text

editor, using the Edit > Pastemenu option or its keyboard shortcut.

Tip: Select one or more nodes and drag them while holding down Option to duplicate and drag your

selection within the same composition. Press Escape during the drag to cancel the duplication.

7.2.4 Deleting nodes and cables

Delete one or more nodes and/or cables from your canvas by selecting them and either pressing

Delete or right-clicking one of your selections and selecting the “Delete” option from its context

menu.

When you delete a node, any cables connected to that node are also deleted. A cable with a yank zone

may also be deleted by yanking it from its connected input port and releasing it.

Any type converters that were helping to bridge non-identical port types are automatically deleted

when their incoming cables are deleted.

Revised April 24, 2014

7 The Vuo Editor Page 34 of 43

7.2.5 Modifying and rearranging nodes and cables

You can move nodes within your canvas by selecting one or more of them and either dragging them

or pressing the arrow keys on your keyboard.

Tip: Hold down Shift while pressing an arrow key to move the nodes even faster.

You can change the constant value for an input port by double-clicking the port, then entering the

new value into the input editor that pops up. (Or you can open the input editor by hovering the cursor

over the port and hitting Return.) When the input editor is open, press Return to accept the new

value or Escape to cancel.

Input editors take on various forms depending on the data type of the specific input being edited –

they may present as a text field, a menu, or a widget such as color picker wheel, for example.

Some ports take lists as input. These ports have special attached “drawers” containing 0 or more

input ports whose values will make up the contents of the list. Drawers contain two input ports by

default, but may be resized to include more or fewer ports by dragging the “drag handle.”

You can change how a trigger port should behave when it’s firing events faster than downstream

nodes can process them. Do this by right-clicking on the port, selecting “Set Event Throttling” from

its context menu, and selecting either “Enqueue Events” or “Drop Events”.

You can change a node’s title (displayed at the top of the node) by double-clicking or hovering over the

title and pressing Return, then entering the new title in the node title editor that pops up. You may

save or dismiss your changes by pressing Return or Escape, respectively, just as you would using a

port’s input editor. You can also select one or more nodes from your canvas and press Return to edit
the node titles for each of the selected nodes in sequence.

You can changeanode’s tint color by right-clicking on thenode, selecting “Tint” from its contextmenu,

and selecting your color of choice. Tint colors can be a useful tool in organizing your composition. For

example, they can be used to visually associate nodes working together to perform a particular task.

7.2.6 Viewing a composition

If your composition is too large to be displayedwithin a single viewport, you can use the Zoombuttons

within the composition window’s menubar, or the View->Zoom In/Zoom Out/Actual Size menu

options, to adjust your view. You can use the scrollbars to scroll horizontally or vertically within the

composition. Alternatively, if you have no nodes or cables selected, you can scroll by pressing the

arrow keys on your keyboard.

Tip: Hold down Shift while pressing an arrow key to scroll even faster.

Revised April 24, 2014

7 The Vuo Editor Page 35 of 43

7.2.7 Publishing Ports

A composition’s published ports are displayed in sidebars, which you can show and hide using the

menu Window > Show/Hide Published Ports.

You can publish any input or output port in a composition. Do this by right-clicking on the port and

selecting Publish Port from the context menu. Alternatively, drag a cable from the port to the

Publish well that appears in the sidebar when you start dragging. You can unpublish the port by

right-clicking on the port again and selecting Unpublish Port.

In the sidebars, you can rename a published port by double-clicking on the name or by right-clicking

on the published port and selecting Rename Published Port.

Special copy/paste behavior to note: If you copy a node with a published port, that port will be pub-

lished under the same name (if possible) in whatever composition you paste it into. The published

port will be created if it does not already exist, merged if an existing published port of the same name

and compatible type does exist, or renamed if an identically-named published port already exists but

has an incompatible type.

7.2.8 Using a protocol for published ports

To create a composition with a predetermined set of published ports defined by a protocol, go to the

Filemenu, select New Composition with Protocol, and select the protocol you want. Typically,

a protocol is used to have a Vuo composition as a plugin inside another application. That application

should instruct you about the protocol to select.

The published ports in a protocol appear in a tinted area of the published port sidebars, with the

protocol name at the top. You can’t rename or delete these published ports. However, you can add

other published ports to the composition and rename or delete them as usual.

7.3 Running a composition

After you’ve built your composition (or while you’re building it), you can run it to see it in action.

Revised April 24, 2014

7 The Vuo Editor Page 36 of 43

7.3.1 Starting and stopping a composition

You can run a composition by clicking the Run button. (Or go to Run > Run.)

You can stop a composition by clicking the Stop button. (Or go to Run > Stop.)

If you start a composition that was created using New Composition with Protocol, then extra

functionality will be added to the composition to help you preview it. Its protocol published input

ports will receive data and events, and its protocol published output ports will send their data and

events to a preview window. For example, if you run a composition with the Image Filter protocol,

then image and time data will be fed into the composition, and the composition’s image output will

be rendered to a window.

7.3.2 Firing an event manually

As you’re editing your running composition, you may want to fire extra events so that your changes

become immediately visible, rather than waiting for the next time a trigger port happens to fire. You

can cause a trigger port to fire an event by right-clicking on the trigger port to pop up a menu, then

choosing Fire Event. Or you can hold down Command while left-clicking on the trigger port. If the

trigger port carries data, it outputs its most recent data along with the event.

7.3.3 Troubleshooting a running composition

In case your composition isn’t working correctly, the Vuo Editor provides features that can help you

see exactly what events and data are flowing through your composition. For more information, see

the section on Troubleshooting.

7.4 Exporting a composition to an application

Using the File > Export App... menu item, you can turn your composition into a Mac application

(.app file) that you can distribute to others. You don’t need to have Vuo installed to run the application.

When exporting a composition that refers to files on your computer (such as images, scenes, or

movies), you need to make sure that those files also exist on the application user’s computer.

Typically, you’ll want to do this by copying the files into the application package. For example, if your

composition uses a Get Image node to load a file called image.png:

• Place image.png in the same folder as your composition (.vuo file).

• In the Vuo Editor, edit the Get Image node’s imageURL input port value to image.png.

• In the Vuo Editor, go to File > Export App... and create MyApp.app.

• Right-click on MyApp.app and choose Show Package Contents.

• In the package contents, go to the Contents folder, then the Resources folder. Copy im-
age.png into that folder.

Revised April 24, 2014

8 The Built-in Nodes Page 37 of 43

8 The Built-in Nodes

Right out of the box, Vuo lets you create multimedia compositions that animate graphics, display

video, communicate with network devices, provide user interaction, and more. Now that you know

the basics of creating Vuo compositions and using the Vuo Editor, you’re ready to explore what you

can create.

This section gives an overview of some of Vuo’s built-in nodes. Much more information about the

built-in nodes is available through the Vuo Editor. Remember that you can search for a node by name

or keyword in the Node Library, and you can see the details about any node by clicking on it.

8.1 Rendering graphics and video

For working with 3D graphics, models, and meshes, the vuo.scene node set is your starting point. It

lets you put 3D objects into a scene, which you can render in a window or image.

For working with 2D graphics, designs, and animations, the vuo.image and vuo.layer node sets are
your starting point. These let you arrange andmanipulate 2D images and render them in a window or

composite image.

When animating 2D and 3D graphics, the vuo.motion node set lets you control the path and speed

of a moving object.

Several node sets let youworkwith video in differentways. For playingmovie files, use thevuo.movie
node set. For sending and receiving video between Vuo compositions and other applications, use the

vuo.syphon node set. For importing video from a Kinect camera, use the vuo.kinect node set.

8.1.1 Vuo Coordinates

When drawing graphics to a window or image, you need to understand the coordinate system of the

area you’re drawing to. For example, when you use the Render Scene to Window node to display

a 3D scene in a window, typically the point in your 3D scene with coordinates (0,0,0) will be drawn

at the center of the window. (If you’re not familiar with the concept of 2D and 3D coordinates, see

http://simple.wikipedia.org/wiki/Cartesian_coordinate_system and other references to learn more.)

All of the built-in nodes that work with graphics use Vuo Coordinates:

Revised April 24, 2014

http://en.wikipedia.org/wiki/Kinect
http://simple.wikipedia.org/wiki/Cartesian_coordinate_system

8 The Built-in Nodes Page 38 of 43

screen
with 4:3 aspect ratio

(1,0,0)

x increases
left to right

(-1,0,0)

y increases
bottom to top

(0,0.75,0)

(0,-0.75,0)

varies with aspect ratio

varies with aspect ratio

z increases
back to front

center
(0,0,0)

Typically, as illustrated above, the position (0,0) for 2D graphics or (0,0,0) for 3D graphics is at the

center of the rendering area. The x-coordinate -1 is along the left edge of the rendering area, and the

x-coordinate 1 is along the right edge. The rendering area’s height depends on the aspect ratio of the

graphics being rendered, with the y-coordinate increasing from bottom to top. In 3D graphics, the

z-coordinate increases from back to front.

Whenworkingwith 3D graphics, you can change the center and bounds of the rendering area by using

aMake Perspective Camera orMake Orthogonal Cameranode. For example, you canuse a camera

to zoom out, so that the rendering area shows a larger range of x- and y-coordinates.

8.2 Processing and playing audio

The vuo.audio node set lets you work with audio input and output. You can use audio input to create

music visualizations or control a composition with sound. You can use audio output to synthesize

sounds. Together, audio input and output can be used to receive a live audio feed, process the audio,

and play the processed audio.

To interface with withMIDI keyboards, synthesizers, and sequencers, you can use the vuo.midi node
set.

Revised April 24, 2014

9 The Command-Line Tools Page 39 of 43

8.3 Communicating over a network

Several node sets let you connect with other devices such as iPhones and iPads, Android phones and

tablets, musical synthesizers and sequencers, and stage lighting.

For working with MIDI devices, use the vuo.midi node set.

For working with OSC devices, use the vuo.osc node set.

8.4 Controlling compositions with devices

Several node sets let users interact with your compositions using an input device.

To receive input from the mouse or trackpad, use the vuo.mouse node set.

To receive keyboard buttons or typing, use the vuo.keyboard node set.

To receive hand and finger movements with a Leap Motion device, use the vuo.leap node set.

For controlling a composition with your body movements using a Kinect, use the vuo.kinect node

set.

9 The Command-Line Tools

As an alternative to using the Vuo Editor, you can use command-line tools to work with Vuo composi-

tions. Although most Vuo users will only need the Vuo Editor, you might want to use the command-

line tools if:

• You’re using the free version of Vuo, which doesn’t include the Vuo Editor.

• You’re writing a program or script that works with Vuo compositions. (Another option is the

Vuo API.)

• You’re working with Vuo compositions in a text-only environment, such as SSH.

A Vuo composition (.vuo file) is actually a text file based on the Graphviz DOT format. You can go

through the complete process of creating, compiling, linking, and running a Vuo composition entirely

in a shell.

Revised April 24, 2014

https://www.leapmotion.com/
http://en.wikipedia.org/wiki/Kinect
http://api.vuo.org/0.7.0/group__DevelopingApplications.html
http://www.graphviz.org/content/dot-language

9 The Command-Line Tools Page 40 of 43

9.1 Installing the Vuo SDK

• Go to https://vuo.org/user and log in to your account

• Click the “Subscriber” tab

• Under the “Vuo SDK” section, download the Vuo SDK

• Uncompress the ZIP file (double-click on it in Finder)

• Move the folder wherever you like

Donot separate the command-line binaries (vuo-compile, vuo-debug, vuo-link, vuo-render) from
the Framework (Vuo.framework) — in order for the command-line binaries to work, they must be in

the same folder as the Framework.

Next, add the command-line binaries to your PATH so you can easily run them from any folder.

• In Terminal, use cd to navigate to the folder containing the Vuo Framework and command-line

binaries

• Run this command:

echo "export PATH=\$PATH:$(pwd)" >> ~/.bash_profile

• Close and re-open the Terminal window

9.2 Getting help

To see the command-line options available, you can run each command-line tool with the --help
flag.

9.3 Rendering a composition on the command line

Using the vuo-render command, you can render a picture of your composition:

Listing 1: Rendering a composition

1 vuo-render --output-format=pdf --output CheckSmsLength.pdf CheckSmsLength.vuo

vuo-render can output either PNG (raster) or PDF (vector) files. The command vuo-render --help
provides a complete list of parameters.

Since composition files are in DOT format, you can also render them without Vuo styling using

Graphviz:

Listing 2: Rendering a Vuo composition using Graphviz

1 dot -Grankdir=LR -Nshape=Mrecord -Nstyle=filled -Tpng -oSmsLength.png CheckSmsLength.vuo

Revised April 24, 2014

https://vuo.org/user

9 The Command-Line Tools Page 41 of 43

9.4 Building a composition on the command line

You can turn a .vuo file into an executable in two steps.

First, compile the .vuo file to a .bc file (LLVM bitcode):

Listing 3: Compiling a Vuo composition

1 vuo-compile --output CheckSmsLength.bc CheckSmsLength.vuo

Then, turn the .bc file into an executable:

Listing 4: Linking a Vuo composition into an executable

1 vuo-link --output CheckSmsLength CheckSmsLength.bc

If you run into trouble building a composition, you can get more information by running the above

commands with the --verbose flag.

If you’re editing a composition in a text editor, the --list-node-classes=dot flag is useful. It out-

puts all available nodes in a format that you can copy and paste into your composition.

9.5 Running a composition on the command line

You can run the executable you created just like any other executable:

Listing 5: Running a Vuo composition

1 ./CheckSmsLength

Using the vuo-debug command, you can run the composition and get a printout of node executions

and other debugging information:

Listing 6: Running a Vuo composition

1 vuo-debug ./CheckSmsLength

Revised April 24, 2014

10 Adding Nodes to Your Node Library Page 42 of 43

9.6 Exporting a composition to an application on the command line

Using the vuo-export command, you can turn a composition into an application:

Listing 7: Exporting a Vuo composition to an application

1 vuo-export --output CheckSmsLength.app CheckSmsLength.vuo

If you run into trouble exporting a composition, you can getmore information by running vuo-export
with the --verbose flag.

This command is equivalent to the File > Export App... menu item in Vuo Editor. See the section

Exporting a composition to an application for more information.

10 Adding Nodes to Your Node Library

You can expand the things that Vuo can do, or save yourself thework of creating the same composition

pieces over and over, by adding nodes to the Vuo Editor’s Node Library.

10.1 Installing a node

If you download a node (.vuonode file), you can install it with these steps:

First, place the node in one of these folders:

• In your home folder, go to Library > Application Support > Vuo > Modules.

– On Mac OS X 10.7 and above, the Library folder is hidden by default. To find it, go to

Finder, then hold down the Option key, go to the Go menu, and pick Library.

• In the top-level folder on your hard drive, go to Library > Application Support > Vuo > Modules.

You’ll typically want to use the first option, since yours will be the only user account on your computer

that should have access to the node class. Use the second option only if you have administrative

access and you want all users on the computer to have access to the node class.

Second, restart the Vuo Editor. The node should now show up in your Node Library.

Revised April 24, 2014

11 Troubleshooting Page 43 of 43

10.2 Creating your own node

Programmers can use Vuo’s API to create new nodes for Vuo. See Developing Node Classes and Types

for Vuo.

11 Troubleshooting

Why isn’t my composition executing? How do I make things happen in my composition? Both ques-

tions have to do with first checking to see if you are generating events and if those events are moving

through the composition as you expect. The Vuo Editor provides three ways to review the event flow

in your composition.

You can use the Vuo Editor’s Show Eventsmode, under the “Run” menu to debug your composition or

help better understand its behavior. In Show Events mode, nodes turn opaque as they are executed

and gradually become more transparent as time passes since their most recent execution. In Show

Events mode, trigger ports are animated as they fire events. You may have to slow down the rate at

which events execute in order to see them flowing through your composition. This will show you if

certain parts of your composition are not executing as expected.

When you have a composition running, you can hover the mouse over any port in the Vuo Editor and

a port popover will appear that reveals real-time information about that port. Next, you can drag the

popover and drop it wherever you’d like and it will become its own independent window, continuously

displaying information about the selected port. Some of the key information displayed is: the current

value present at the port, the amount of time since the last event occurred, and the type of port se-

lected. You can create many popovers, showing all the information you’d like to keep track of. This

feature will allow you to easily monitor compositions and serve as a useful tool for problem-solving

and creating.

Don’t forget node popovers. They can be displayed when mousing over the title of a node on the

canvas, not just when browsing node listings within the node library. By hovering the mouse cursor

over a node, youwill be presented with a popover (tooltip) describing the general purpose of the node

as well as details that will help you make use of it.

Revised April 24, 2014

http://api.vuo.org/0.7.0/group__DevelopingNodeClassesTypes.html
http://api.vuo.org/0.7.0/group__DevelopingNodeClassesTypes.html

	Introduction
	Quick Start
	Install Vuo
	Create a composition
	Run the composition

	The Basics
	The `flow' or execution of events
	Nodes, ports, and cables
	Sending data and events between nodes

	Creating a composition
	Live coding
	Viewing example compositions

	Controlling the Flow of Events
	How events travel through a node
	Input ports
	Output ports

	Controlling when nodes execute
	Feedback loops
	Logic Nodes
	Routing data with select nodes
	Executing nodes in parallel
	Executing nodes in the background
	Executing nodes at a steady rate
	Summary

	Controlling the buildup of events

	Understanding Data
	Setting a constant value for a port
	Using the default value of a port
	Sending the same data to multiple ports
	Using drawers
	Storing information
	Types of information
	Converting between types
	Using generic types

	Interacting with the environment

	Interfacing with Applications
	Published ports
	Protocols

	The Vuo Editor
	The Node Library
	Docking and visibility
	Node names and node display
	Node Popovers
	Finding Nodes

	Working on the canvas
	Putting a node on the canvas
	Drawing cables to create a composition
	Copying and pasting nodes and cables
	Deleting nodes and cables
	Modifying and rearranging nodes and cables
	Viewing a composition
	Publishing Ports
	Using a protocol for published ports

	Running a composition
	Starting and stopping a composition
	Firing an event manually
	Troubleshooting a running composition

	Exporting a composition to an application

	The Built-in Nodes
	Rendering graphics and video
	Vuo Coordinates

	Processing and playing audio
	Communicating over a network
	Controlling compositions with devices

	The Command-Line Tools
	Installing the Vuo SDK
	Getting help
	Rendering a composition on the command line
	Building a composition on the command line
	Running a composition on the command line
	Exporting a composition to an application on the command line

	Adding Nodes to Your Node Library
	Installing a node
	Creating your own node

	Troubleshooting

