
2.4.0

Contents

1 Getting started 9

1.1 Quick start . 9

1.1.1 Creating a new composition . 10

1.1.2 Running the composition . 11

1.1.3 Adding a node . 12

1.1.4 Connecting nodes with cables . 13

1.1.5 Editing an input port value . 15

1.1.6 Adding another node . 16

1.1.7 Summary . 19

1.2 Tracing through a composition . 20

1.2.1 Port popovers . 20

1.2.2 Information flow . 20

1.2.3 Step 1: Fire on Display Refresh to Make Noise Image 21

1.2.4 Step 2: Make Noise Image to Make Stained Glass Image 21

1.2.5 Step 3: Make Stained Glass Image to Render Image to Window 22

1.2.6 Summary . 23

1.3 Learning Vuo . 23

1.3.1 User manual . 23

1.3.2 Tutorials . 23

1.3.3 Example compositions . 24

1.3.4 Community support . 24

1.3.5 Node documentation . 25

1.3.6 SDK documentation . 25

1.3.7 Vuo in other applications . 25

1.4 Installing Vuo . 26

1.4.1 Activating Vuo Pro . 26

1.5 Changing language settings . 27

2 The basics 28

2.1 A composition is what you create with Vuo . 28

2.2 Nodes are your building blocks . 28

2.3 Events are what cause nodes to execute . 30

2.4 Trigger ports fire events and sometimes data . 32

2.5 Events and data travel through cables . 33

2.6 Events and data enter and exit a node through ports 34

2.7 Events and data enter and exit a composition through published ports 37

3 How events and data travel through a composition 39

3.1 Where events come from . 39

3.2 How events travel through a node . 40

3.2.1 Input ports . 40

2

Contents Page 3 of 162

3.2.2 Output ports . 42

3.3 How events travel through a composition . 43

3.3.1 The rules of events . 43

3.3.2 Straight lines . 44

3.3.3 Splits and joins . 44

3.3.4 Multiple triggers . 45

3.3.5 Feedback loops . 46

3.3.6 Summary . 47

3.4 How data travels through a composition . 48

3.4.1 Ignoring data . 48

3.4.2 Data flow without an event . 49

3.5 Solving problems with event flow . 50

3.5.1 “Infinite feedback loop” error . 50

3.5.2 “Deadlocked feedback loop” error . 52

3.5.3 Buildup of events . 52

4 How compositions process data 54

4.1 Data types . 54

4.1.1 Basic data types . 54

4.1.2 Type-converter nodes . 55

4.1.3 List data types . 56

4.1.4 Dictionary data types . 57

4.1.5 Ports with changeable data types . 57

4.2 Inputting data . 63

4.2.1 Editing data in a node’s input port . 63

4.2.2 Editing data in a published input port . 65

4.2.3 Inputting lists . 66

4.2.4 Inputting dictionaries . 66

5 How nodes can be used as building blocks 67

5.1 Finding out what nodes are available . 67

5.2 Learning how to use a node . 67

5.3 Pro nodes . 68

5.4 Deprecated nodes . 68

5.5 The built-in nodes . 69

5.5.1 Graphics/video . 69

5.5.2 Sound/audio . 70

5.5.3 User input devices . 70

5.5.4 Music and stage equipment . 71

5.5.5 Applications . 71

5.5.6 Sensors, LEDs, and motors . 71

5.5.7 Displays . 72

Revised November 24, 2021

Contents Page 4 of 162

5.5.8 Files . 72

5.5.9 Internet . 72

5.6 Adding nodes to the canvas by dropping files . 72

5.7 Creating a node . 73

5.8 Installing a node . 73

5.8.1 Installing a node the quick way . 73

5.8.2 Making a node available to all compositions 74

5.8.3 Making a node available to one or a few compositions 75

5.8.4 Uninstalling a node . 75

6 Using subcompositions inside of other compositions 76

6.1 Making a subcomposition available to other compositions 79

6.2 Reasons to use subcompositions . 79

6.3 Creating a subcomposition . 79

6.3.1 Naming a subcomposition . 80

6.4 Editing a subcomposition . 80

6.5 Watching events and data inside a subcomposition 81

6.6 How events travel through a subcomposition . 82

6.6.1 Events into a subcomposition . 82

6.6.2 Events out of a subcomposition . 83

6.6.3 Constant input port values . 86

7 Making compositions fit a mold with protocols 89

7.1 Image Filter protocol . 89

7.1.1 Published input ports . 89

7.1.2 Published output ports . 90

7.2 Image Generator protocol . 90

7.2.1 Published input ports . 90

7.2.2 Published output ports . 91

7.3 Image Transition protocol . 92

7.3.1 Published input ports . 92

7.3.2 Published output ports . 92

7.4 Time . 93

7.5 Quality . 93

7.6 Creating a protocol composition . 93

7.7 Editing a protocol composition . 94

7.8 Running a protocol composition . 94

7.9 How events travel through a protocol composition 94

8 Exporting compositions 96

8.1 Exporting an image . 96

8.2 Exporting a movie . 96

8.2.1 Recording the graphics in a window . 97

Revised November 24, 2021

Contents Page 5 of 162

8.2.2 Exporting a movie from an Image Generator composition 98

8.3 Exporting a screen saver . 98

8.3.1 Sharing screen savers . 98

8.4 Exporting an FxPlug plugin . 99

8.4.1 Video effects . 99

8.4.2 Transitions . 99

8.4.3 Generators . 99

8.4.4 Category and name . 100

8.4.5 Parameters . 100

8.4.6 Image scaling . 101

8.4.7 Sharing plugins . 101

8.4.8 Uninstalling plugins . 102

8.4.9 Maintaining compatibility between plugin versions 102

8.5 Exporting an FFGL plugin . 102

8.5.1 Sources . 103

8.5.2 Effects . 103

8.5.3 Blend modes . 103

8.5.4 Name . 103

8.5.5 Parameters . 103

8.5.6 Sharing plugins . 104

8.5.7 Uninstalling plugins . 104

8.6 Exporting an application . 105

9 Turning graphics shaders into nodes 106

9.1 Creating an ISF node . 106

9.2 Editing an ISF node . 107

9.3 Saving an ISF node . 107

9.4 How ISF source code translates to a Vuo node . 108

9.4.1 Node metadata . 108

9.4.2 Ports . 108

9.4.3 Data types . 109

9.4.4 Output image size and color depth . 110

9.4.5 Coordinates . 110

9.4.6 Examples . 111

9.5 Supported ISF features . 114

9.5.1 Functions . 114

9.5.2 Uniforms . 115

9.5.3 Unsupported . 115

10 The Vuo editor 117

10.1 The Node Library . 117

10.1.1 Docking and visibility . 117

Revised November 24, 2021

Contents Page 6 of 162

10.1.2 Node names and node display . 118

10.1.3 Node Documentation Panel . 118

10.1.4 Searching for nodes . 119

10.2 Working on the canvas . 120

10.2.1 Putting a node on the canvas . 120

10.2.2 Drawing cables to create a composition . 121

10.2.3 Adding a comment . 121

10.2.4 Copying and pasting nodes, cables, and comments 122

10.2.5 Deleting nodes, cables, and comments . 122

10.2.6 Rearranging nodes, cables, and comments 122

10.2.7 Replacing nodes . 122

10.2.8 Editing node settings . 123

10.2.9 Editing port values and settings . 123

10.2.10 Finding nodes on the canvas . 123

10.2.11 Viewing a composition . 124

10.2.12 Publishing ports . 124

10.2.13 Using a protocol for published ports . 125

10.3 Running a composition . 125

10.3.1 Starting and stopping a composition . 125

10.3.2 Firing an event manually . 125

10.4 Editing composition information . 126

10.5 Working with subcompositions . 126

10.5.1 Installing a subcomposition . 126

10.5.2 Editing a subcomposition . 127

10.5.3 Uninstalling a subcomposition . 127

10.6 Changing the editor’s appearance . 127

10.6.1 Dark mode . 127

10.6.2 Transparency . 127

10.6.3 Grid points and lines . 127

10.6.4 Toolbar labels . 128

10.7 Keyboard Shortcuts . 129

10.7.1 Working with composition files . 129

10.7.2 Controlling the composition canvas . 129

10.7.3 Creating and editing compositions . 130

10.7.4 Creating and editing shaders . 130

10.7.5 Running compositions (when the Vuo editor is active) 131

10.7.6 Running compositions (when the composition is active) 131

10.7.7 Application shortcuts . 131

11 The command-line tools 131

11.1 Installing the Vuo SDK . 132

11.2 Getting help . 132

Revised November 24, 2021

Contents Page 7 of 162

11.3 Building a composition on the command line . 133

11.4 Running a composition on the command line . 133

11.5 Exporting a composition on the command line . 133

11.6 Printing the composition source code . 134

12 Common patterns - “How do I…” 135

12.1 Do something in response to user input . 135

12.2 Do something after something else is done . 135

12.3 Do something if one or more conditions are met . 136

12.4 Do something if an event is blocked . 137

12.5 Do something if data has changed . 138

12.6 Do something after an amount of time has elapsed 139

12.7 Do something repeatedly over time . 140

12.8 Do something to each item in a list . 141

12.9 Create a list of things . 142

12.10 Maintain a list of things . 143

12.11 Gradually change from one number/point to another 143

12.12 Set up a port’s data when the composition starts . 144

12.13 Send the same data to multiple input ports . 145

12.14 Merge data/events from multiple triggers . 146

12.15 Route data/events through the composition . 147

12.16 Reuse the output of a node without re-executing the node 148

12.17 Run slow parts of the composition in the background 149

13 Troubleshooting 151

13.1 Tools for troubleshooting compositions . 151

13.1.1 Watch events with Show Events mode . 151

13.1.2 Watch data and events with port popovers 151

13.1.3 Watch data and events with Display Console Window 151

13.1.4 Check for errors in the Console . 152

13.1.5 Check your assumptions by reading node descriptions 152

13.2 Common problems . 152

13.2.1 My composition isn’t working and I don’t know why. 152

13.2.2 Some nodes aren’t executing. 152

13.2.3 Some nodes are executing when I don’t want them to. 153

13.2.4 Some nodes are outputting the wrong data. 153

13.2.5 The composition’s output is slow or jerky. 154

13.2.6 Vuo slows down when my computer heats up. 154

13.2.7 Various compositions won’t run . 155

13.3 General tips . 156

14 Contributors 157

14.1 Contributors . 157

Revised November 24, 2021

Contents Page 8 of 162

14.2 Software Vuo uses . 158

14.3 Resources Vuo uses . 159

Glossary 159

Revised November 24, 2021

1 Getting started Page 9 of 162

1 Getting started

Welcome to the Vuo community! So you want to learn how to use Vuo in your creative work. Let’s

jump right in with an example.

1.1 Quick start

This example will walk you through the process of creating an animated pattern like this:

You can watch a video of this exam-
ple at https://vuo.org/quickstart

Tip

You can find the completed ex-
ample composition in Ablage

Öffnen Beispiel Quick Start .

Tip

Revised November 24, 2021

1 Getting started Page 10 of 162

If you haven’t already, download and install Vuo, as described in the Installing Vuo section.

1.1.1 Creating a new composition

In Vuo, the documents that you work with are called compositions. Start a new composition by going

to Ablage Neuer Aufbau aus Vorlage Fenster Bild .

The rounded rectangles in the composition window are called nodes. The area that you place nodes

on is called the canvas.

For this example, you won’t need all of these nodes, just Fire on Display Refresh and Render Image to

Window. So you can click on each of the rest of the nodes and hit ⌫ (Delete).

Revised November 24, 2021

1 Getting started Page 11 of 162

As you may have guessed from their titles, each node has a job or responsibility. The two nodes on

the canvas will each perform a task that contributes to the animated pattern that you’re creating. The

Render Image to Window node will be in charge of displaying the pattern in a window. The Fire on

Display Refresh node will be in charge of the timing of the animation.

An animation is a series of images
displayed in rapid succession. The
fastest rate at which your computer
monitor can display a series of im-
ages is called the display refresh rate.
On many monitors, the display re-
fresh rate is 60 times per second.

Tip

1.1.2 Running the composition

Let’s see what you’ve built so far. Click the Run button. This launches the composition.

Before, on the canvas, you were looking at a blueprint or instructions for what the composition is

supposed to do. Now, you’re seeing the composition in action.

The window that pops up comes from the Render Image to Window node.

Revised November 24, 2021

1 Getting started Page 12 of 162

1.1.3 Adding a node

So far, you have a solid black graphics window. To show an image in the window, you’ll need a node

whose job it is to make an image. To find such a node, search the Node Library for “make image”, like

this:

The Node Library is a directory of all
available nodes. If you don’t see it,
go to Ansicht Knotenbibliothek

Knotenbibliothek anzeigen .

Tip

Revised November 24, 2021

1 Getting started Page 13 of 162

In the search results, locate the Make Noise Image node.

Drag the Make Noise Image node from the Node Library onto the canvas.

1.1.4 Connecting nodes with cables

Now you have three nodes on the canvas. Individually, each node does a simple job. How do you

make them work together to accomplish something bigger? You connect them with cables.

Start dragging from the circle on the right of the Fire on Display Refresh node, which is called an

output port. The line that emerges from the port as you drag is called a cable. Drop the end of the

cable onto the circle on the left side of the Make Noise Image node labeled Time, which is called an

input port.

Revised November 24, 2021

1 Getting started Page 14 of 162

Next, drag a cable from the output port of Make Noise Image and drop it on the Render Image to

Window node’s Image input port.

Back in the graphics window, you can see that the three nodes are now working together to make a

rapid succession of noise images and display them in a window.

To learn about noise images, read
the Make Noise Image node’s docu-
mentation in the lower panel of the
Node Library.

Tip

Revised November 24, 2021

1 Getting started Page 15 of 162

The ability to modify a composition
while it’s running and see the re-
sults immediately, as in this exam-
ple, is called live editing.

Tip

1.1.5 Editing an input port value

You can alter how a node does its job by editing its input port values. For example, double-click on

the Make Noise Image node’s Color B input port and choose a different color.

Revised November 24, 2021

1 Getting started Page 16 of 162

1.1.6 Adding another node

You can add more nodes to your composition to make more interesting effects. Search the Node

Library for “image filter” to see the built-in image effects.

Revised November 24, 2021

1 Getting started Page 17 of 162

Drag the Make Stained Glass Image node from the Node Library onto the canvas.

Draw a cable from the Make Noise Image node’s output port to the Make Stained Glass Image node’s

Image input port, then another cable from the Make Stained Glass Image node’s output port to the

Render Image to Window node’s input port.

Revised November 24, 2021

1 Getting started Page 18 of 162

As you did with the Make Noise Image node, you can adjust how the Make Stained Glass Image node

affects the image by editing the node’s input port values.

Revised November 24, 2021

1 Getting started Page 19 of 162

1.1.7 Summary

This example covered many of the basics of using Vuo.

• You learned that each node is in charge of one job.

• You learned that nodes work together by communicating through cables connected at ports.

• You launched your composition into action with the Run button.

• You searched the Node Library for a node that does a specific job.

• You added nodes to the canvas and connected them with cables.

• You changed settings such as colors by editing input ports.

• You used specimens of some common varieties of nodes: nodes that are in charge of timing,

nodes that generate and filter images, and nodes that render graphics to a window.

Next, we’ll take a closer look at what exactly happens while a composition is running.

Revised November 24, 2021

1 Getting started Page 20 of 162

1.2 Tracing through a composition

When you ran the Quick Start composition, the four nodes in the compositionworked together to create

an end result: a window displaying an animated pattern. As you added each node to the composition,

you saw how it contributed to the end result. Now let’s look at each node’s contribution in more detail.

1.2.1 Port popovers

If you want to understand the inner workings of a composition, port popovers are an extremely useful

tool. You can visualize step by step how each node contributes to the end result.

Open the port popover for the Fire on Display Refresh node’s Refreshed at Time output port by clicking

on the port. The small window that appears is the port popover. As the composition runs, the port

popover shows the information flowing through the port in real time.

1.2.2 Information flow

Two kinds of information can flow through ports: data and events.

For the Refreshed at Time port, the data is the time — the number of seconds since the composition

started running. At the moment the screenshot above was taken, the port popover showed that the

data was about 12.87.

The port popover also shows that the Refreshed at Time port is outputting information at about 60

times per second (the monitor’s refresh rate). Every 1/60 second, the port outputs a slightly greater

number of seconds — accompanied by a second piece of information called an event.

Revised November 24, 2021

1 Getting started Page 21 of 162

Events control the timing of your composition. An event is an impetus or signal that tells a node that

it’s time to do its job.

Why are events and data separate
things? This will become clear
later when you learn about event-
only ports and event-only cables, in
which events travel without data.

Tip

When you run the Quick Start composition, the nodes do their jobs one at a time, left to right. That’s

not because they happen to be placed left to right on the canvas, but because the events and data flow

through nodes and cables in a methodical way — which we’ll trace through now using port popovers.

1.2.3 Step 1: Fire on Display Refresh to Make Noise Image

Click on the port popover for Refreshed at Time so it will stay open on the canvas. Then click on the

Make Noise Image node’s Time input port to open its popover.

As you can see, the events and data shown in the two port popovers are the same. A stream of

information is flowing out of the Refreshed at Time output port, along the cable, and into the Time

input port.

As each event hits theMakeNoise Image node’s Time input port, it prompts theMakeNoise Image node

to do its job. The node does so, using the data that accompanied the event as one of its parameters.

1.2.4 Step 2: Make Noise Image to Make Stained Glass Image

Open the port popover for the Make Noise Image node’s output port. It shows a small version of the

image created by the node.

Revised November 24, 2021

1 Getting started Page 22 of 162

Each time the Make Noise Image node does its job, it sends two pieces of information through its

output port — the same event that came in the Time input port, accompanied by new data: the image

created by the node.

The event and data then flow along the cable to the Make Stained Glass Image node’s Image input

port.

1.2.5 Step 3: Make Stained Glass Image to Render Image to Window

Open the port popover for the Make Stained Glass Image node’s output port.

Now that the Fire on Display Refresh, Make Noise Image, and Make Stained Glass Image nodes have

worked together to produce the image shown in the port popover, the final step is for the Render

Image to Window node to display the image in a window.

Revised November 24, 2021

1 Getting started Page 23 of 162

1.2.6 Summary

By tracing through the Quick Start composition, this section illustrated some skills and concepts for

understanding how a composition works.

• You learned that Vuo has two basic kinds of information: data and events.

• You opened port popovers to reveal the data and events flowing through the composition.

• You watched two types of data, numbers and images, flowing through the composition.

• You observed the rate at which events were prompting nodes to do their jobs.

1.3 Learning Vuo

Now that you’ve perused the Quick Start and Tracing through a composition sections, you’ve been

exposed to the key concepts underlying Vuo and are well on your way to creating your own custom

compositions. Before digging deeper into those concepts, we’ll mention some resources that teach

Vuo in different ways. You can choose the path that best matches your learning style.

1.3.1 User manual

The user manual (this document) provides the most detailed documentation of the concepts underly-

ing Vuo and of Vuo’s user interface. You may choose to read it all the way through, or you may refer

to it when you have questions about a specific topic.

In Vuo’s Help menu, you can use the search box to find topics within this manual.

Terms used in this manual are defined in the glossary at the end.

A high-contrast version of the manual is available on our release notes page.

1.3.2 Tutorials

Video tutorials are available on our tutorials page.

Revised November 24, 2021

https://vuo.org/release
https://vuo.org/tutorials

1 Getting started Page 24 of 162

1.3.3 Example compositions

Vuo comes with over 200 example compositions that demonstrate how to accomplish tasks in Vuo.

Example compositions can be quite helpful when learning how to use a node. Many nodes have

relevant example compositions listed in their Node Documentation Panel.

You can search for an example
composition by name in the Help
menu’s Search box.

Tip

To browse the list of all example compositions, go to Ablage Öffnen Beispiel .

1.3.4 Community support

The community of people who use Vuo can be an incredibly helpful resource when you’re learning

Vuo. As part of that community, you can discuss questions and answers on how to use Vuo, share

compositions, and suggest features to improve Vuo. To get started, visit our community page.

Revised November 24, 2021

https://vuo.org/community

1 Getting started Page 25 of 162

1.3.5 Node documentation

Every built-in node and node set in Vuo comes with documentation that explains how to use it.

Alternatively, you can browse the online node documentation.

1.3.6 SDK documentation

If you’re a developer who would like to embed Vuo in an application or to implement custom nodes,

you can explore the API documentation.

1.3.7 Vuo in other applications

If you use CoGe or VDMX (VJ applications that mix and composite media), you can install Vuo composi-

tions to add to your available visual effects. This manual explains how to set up your compositions in

Making compositions fit a mold with protocols. To learn how to install and use compositions in CoGe

and VDMX, check out their documentation.

Revised November 24, 2021

https://doc.vuo.org/2.4.0/node/
https://api.vuo.org/
https://imimot.com/cogevj/
https://vidvox.net/

1 Getting started Page 26 of 162

1.4 Installing Vuo

• Go to https://vuo.org/download.

• Click the “Download Vuo” button.

• Uncompress the ZIP file (double-click on it in Finder).

• Move the Vuo application to your Applications folder.

• Open the Vuo application.

• Follow the instructions in the dialogs.

1.4.1 Activating Vuo Pro

If you’ve purchased Vuo Pro, you’ll need to activate your license in the application.

After launching Vuo, when you reach the dialog below, click Activate Vuo Pro.

In the next dialog, follow the instructions to activate Vuo Pro.

Revised November 24, 2021

https://vuo.org/download

1 Getting started Page 27 of 162

1.5 Changing language settings

New in Vuo 2.0Vuo has been partially translated to español (Spanish), français (French), and Deutsch (German). If your

computer is already using one of those languages, then the Vuo editor will appear in that language.

To change the language of Vuo and other applications:

• InmacOS SystemPreferences, go to Sprache & Region Allgemeines (or just Sprache & Region

on earlier macOS versions).

• Under “Preferred languages”, move the desired language to the top of the list.

• Relaunch Vuo.

To change the language of Vuo only (macOS 10.15+):

• In macOS System Preferences, go to Sprache & Region Apps .

• Add Vuo and select the desired language.

• Relaunch Vuo.

If you can help correct translations or translate Vuo to another language, we’d appreciate it! Please

contact us.

Revised November 24, 2021

https://vuo.org/contact

2 The basics Page 28 of 162

2 The basics

The previous section walked you through the steps of creating a simple composition. By now, you

may know a bit about the process of composing with Vuo, but you may not understand exactly how

compositions work or how make your own from scratch. This section introduces the major concepts

you need to understand when working with Vuo.

If you prefer to learn by doing, we recommend that you read this section and then experiment with

Vuo’s example compositions to learn how to create your own. If you prefer to have a deeper under-

standing of the concepts underlying Vuo, we recommend that after this section you continue to the

next sections, which cover the concepts in more detail — How events and data travel through a com-

position, How compositions process data, and How nodes can be used as building blocks.

2.1 A composition is what you create with Vuo

When musicians create a piece of music, they call it a composition. When you create something in

Vuo, that’s also called a composition.

In the Quick Start section, you saw how to create a composition that displays a moving twirly stripy

design. That’s one type of Vuo composition — an animation that displays in a window. Vuo can be

used to create much more complex and interesting animations. It can also be used to create many

other types of compositions. A composition could be a game. It could be an art installation. It could

be a controller for stage lighting. It could be digital signage. It could be a plug-in for other software.

Those are just some examples of what a composition could be.

A composition is a program whose
source code is a visual representa-
tion of the program’s data flow. It’s
compiled and linked to create an ap-
plication or library.

Note for
text programmers

One thing that all compositions have in common is the process of creating them in Vuo. You start with

either a new canvas or an existing composition, and you pick out building blocks and connect them

to make many smaller pieces work together as a larger whole.

Another thing that all compositions have in common is the way that they run. When you click the Run

button, all of those building blocks and connections that you laid out as a blueprint get turned into a

running application.

2.2 Nodes are your building blocks

Each composition does something unique, and the way that you build up that something is by putting

together nodes. These are your building blocks.

Revised November 24, 2021

2 The basics Page 29 of 162

Let’s say you’re creating a composition that displays a 3D model. You might use the Fetch Scene node

to load the 3D model from a file and the Render Scene to Window node to render the model in a

window.

A node is like a function. It encap-
sulates a task. It takes inputs and
produces outputs. More precisely,
nodes are like class instance meth-
ods, since they can also maintain a
state.

Note for
text programmers

Fetch	Scene
vuo.scene.fetch

URL
True Center
True Fit
False Has	Left-handed	Coordinates

Render	Scene	to	Window
vuo.scene.render.window

Objects
Camera	Name

4 Multisampling
Set	Window	Properties

Showed	Window
Refreshed	at	Time

Or suppose you’re creating a composition that applies a color effect to a movie. You might use the

Play Movie node to bring the movie into the composition, the Adjust Image Colors node to change the

movie’s color, and the Save Images to Movie node to save the color-changed movie to a file.

Play	Movie
vuo.video.play

Play
Pause

0 Set	Time
URL

Loop Loop
1 Playback	Rate

Auto Optimization

Decoded	Video
Decoded	Audio

Finished	Playback

Adjust	Image	Colors
vuo.image.color.adjust

Image
0 Saturation
0 Vibrance
0 Hue	Shift
0 Temperature
0 Tint
0 Contrast
0 Brightness
0 Exposure
1 Gamma

Save	Images	to	Movie
vuo.video.save

~/Desktop/MyMovie.mov URL
Save	Image
Save	Audio
Finalize

False Overwrite	URL
H.264,	Linear	PCM Format

Finalized

Part of the process of creating a composition is taking your idea of what it should do and breaking

that down into smaller tasks, where each task is carried out by a node. Each node in Vuo has a specific

job that it does. Some nodes do simple jobs, like adding numbers or checking if two pieces of text are

the same. Other nodes do something complex, like receiving a stream of video from a camera, finding

a barcode in an image, or turning a 3D object into a wiggly blob. You can browse through a list of all

the nodes available in the Node Library (the panel along the left side of the Vuo editor window) or the

online node documentation.

When you start making a composition, often the first thing you’ll do is pick a node from the Node

Library. You can search the Node Library for what you want to do (for example, a search for “movie”

brings up a list of nodes for playing, inspecting, and saving movies) and then drag the nodes you want

onto the composition canvas.

You can learn about a node by looking at its title, node class name, and port names, which are pointed

out in the illustration below. For a detailed description of how the node works, you can look at

the node’s documentation, which appears in the Node Documentation Panel in the lower part of the

Node Library. Many nodes come with example compositions (listed in the node’s documentation) that

demonstrate the node in action.

Revised November 24, 2021

https://doc.vuo.org/2.4.0/node/

2 The basics Page 30 of 162

Fire Periodically
vuo.time.firePeriodically2

1 Seconds Fired at Time

node title
node class name

port names

2.3 Events are what cause nodes to execute

Let’s think again about creating a composition that applies a color effect to a movie. Your first step

might be to drop a Play Movie node, an Adjust Image Colors node, and a Append to Movie node onto

the canvas. Then what? How do you tell the composition that, first, you want Play Movie to bring the

movie into the composition, second, you want Adjust Image Colors to apply the effect, and third, you

want Append to Movie to save the movie to a file? The way that you control when nodes do their job

and how information flows between them is with events.

Here’s a composition that simply displays some text on a window:

Vuo is event-driven. The events are
generated by trigger ports, and the
event handlers are implemented by
the nodes executed as the event
travels through the composition.

Note for
text programmers

Fire	on	Start
vuo.event.fireOnStart

Started

Make	Text	Image
vuo.image.make.text

Hello	World! Text
Helvetica	96pt Font

0 Rotation
Auto Wrap	Width

Render	Image	to	Window
vuo.image.render.window2

Image
Set	Window	Description

Updated	Window

How do events come into play in this composition? This composition involves a single event that

causes the text to render as soon as the composition starts running. The event is fired (originates)

from the trigger port called Started on the Fire on Start node. (A trigger port is a special kind of port,

which you can recognize by the thick line along its left side.) The event travels to theMake Text Image

node, causing that node to execute (do its job). The event then travels onward to the Render Image

to Window node, causing it to execute as well. From the Make Text Image node to the Render Image

to Window node, the event carries with it the image that was created by Make Text Image and will be

rendered by Render Image to Window.

Here’s a variation on that composition that involves multiple events:

1
10 2

Fire	on	Display	Refresh
vuo.event.fireOnDisplayRefresh

Refreshed	at	Time

Fire	on	Start
vuo.event.fireOnStart

Started

Make	Text	Image
vuo.image.make.text

Hello	World! Text
Helvetica	96pt Font

0 Rotation
Auto Wrap	Width

Multiply
vuo.math.multiply

Values

Render	Image	to	Window
vuo.image.render.window2

Image
Set	Window	Description

Updated	Window

Twirl	Image
vuo.image.twirl2

Image
(0,	0) Center

Angle
0.5 Radius

Revised November 24, 2021

2 The basics Page 31 of 162

This composition displays an animation of the text becoming more and more twirled as time passes.

It still has the event fired from the Fire on Start node’s Started port when the composition starts. It

also has events being fired from another trigger port: the Fire on Display Refresh node’s Refreshed at

Time port. Unlike the Started port, which fires only once, the Refreshed at Time port fires 60 times per

second (or whatever your computer display’s refresh rate is). Unlike the event from Started port, which

is useful for doing something once, the events from the Refreshed at Time port are useful for doing

something continuously, such as displaying an animation that changes smoothly over time. In the

composition above, each of those 60 times per second that the Refreshed at Time node fires an event,

that event (along with a piece of information that says how long the composition has been running)

travels to the Multiply node. The event (along with the result of multiplying numbers) travels to the

Twirl Image node. Finally, the event (along with the twirled image) travels to the Render Image to

Window node. As the event travels along its path, it causes each node to execute in turn, and carries

information with it from one node to the next.

Here’s a composition that doesn’t display text in the window (can you guess why?):

Make	Text	Image
vuo.image.make.text

Hello	World! Text
Helvetica	96pt Font

0 Rotation
Auto Wrap	Width

Render	Image	to	Window
vuo.image.render.window2

Image
Set	Window	Description

Updated	Window

This composition doesn’t have any events going into theMake Text Image node. Without any incoming

events, the Make Text Image node never executes and never passes an image along to the Render

Image to Window node. So no text is displayed. If you want a node to execute, make sure you feed it

some events!

If you’d like to watch the events moving through a composition, you can do that by clicking the Show

Events button in the toolbar. As the composition runs, you can see the events being fired from trigger

ports, and you can trace the path of the event by watching each node change color as it executes.

Revised November 24, 2021

2 The basics Page 32 of 162

2.4 Trigger ports fire events and sometimes data

As you just saw, events are fired from trigger ports, which are special ports that some nodes have.

Here are some examples of trigger ports:

Fire Periodically
vuo.time.firePeriodically2

1 Seconds Fired at Time

event-only trigger port

Fire on Start
vuo.event.fireOnStart

Started

Receive Live Video
vuo.video.receive2

Default Device
Auto Width
Auto Height

Received Frame

Receive Mouse Buttons
vuo.mouse.button2

Window
Left Button
Any Modifier Key

Pressed
Released

data-and-event trigger ports

The Started trigger port on the Fire on Start node fires a single event when the composition starts

running. The Fired at Time trigger port on the Fire Periodically node fires events at a rate determined

by the node’s Seconds port. The Pressed trigger port on the Receive Mouse Buttons node fires an

event each time the mouse button is pressed, and the Released trigger port fires an event each time

the mouse button is released. The Received Frame trigger port on the Receive Live Video node fires

events as it receives a stream of images from a camera.

Some trigger ports, like Started, fire just events. Other trigger ports, like Pressed, Released, and

Received Frame, fire data (a piece of information) along with each event. The Pressed and Released

ports fire the coordinates of the point where the mouse was pressed or released. The Received Frame

port fires the video frame received from the camera. This data travels along with the event to the next

node. When that node executes, it can use the data to do its job (such as drawing a shape at the given

coordinates, or extracting an image from the given video frame).

Nodes with trigger ports are often responsible for bringing information into the composition from

the outside world, such as video, audio, device input, and network messages. These nodes can be a

Revised November 24, 2021

2 The basics Page 33 of 162

good starting point when creating a composition. You can see a list of all nodes with trigger ports by

searching the Node Library for “trigger” or “fire”.

As just mentioned, one way to watch what trigger ports are doing in a composition is to run the

composition with Show Events enabled. Another way is to click on the trigger port, which opens

a view called the Port Popover. As the composition runs, the Port Popover shows how recently the

trigger port fired an event and what data (if any) came with the event.

If you click on the Port Popover,
it becomes a small window that
you can leave open as you continue
working and perhaps open other
Port Popovers.

Tip

2.5 Events and data travel through cables

Let’s take yet another look at this composition that displays text in a window:

Fire	on	Start
vuo.event.fireOnStart

Started

Make	Text	Image
vuo.image.make.text

Hello	World! Text
Helvetica	96pt Font

0 Rotation
Auto Wrap	Width

Render	Image	to	Window
vuo.image.render.window2

Image
Set	Window	Description

Updated	Window

The lines connecting the nodes are called cables. Cables are the conduits that data and events travel

through.

In the composition above, an event travels along the cable from the Started trigger port of the Fire

on Start node to the Text port of the Make Text Image node. An event and data travel along the

cable from the Make Text Image node to the Render Image to Window node’s Image port. Notice the

difference between the two cables: the first cable is thinner since it only carries events (an event-only

cable), while the second cable is thicker since it carries both events and data (a data-and-event cable).

Revised November 24, 2021

2 The basics Page 34 of 162

Often it helps to think of cables as pipes that data and events flow through. Like water flowing through

a pipe, events and data flow through the cable from one end to the other, always in the same direction.

Extending the water analogy, you can think of trigger ports as being upstream and the nodes that their

events flow to as being downstream.

But, unlike water flowing through a pipe, events and data travel as discrete packets instead of a

continuous flow. Another way to think of a cable is as a one-way, one-lane road on which each event

is a car. On some roads (data-and-event cables), each car carries a piece of data.

You can create a cable by dragging the mouse from one port to another. While you’re dragging, the

ports that you’re allowed to connect the cable to are highlighted. If you’re not allowed to connect a

cable from one port to another, it’s because the two ports have different, incompatible types of data.

For example, you can’t connect a port whose data is a number to a port whose data is a 3D model.

2.6 Events and data enter and exit a node through ports

When an event (and possibly data) is fired from a trigger port and travels along a cable, what happens

when it reaches the port on the other end of the cable?

That port on the other end is called an input port. You can think of it as a portal that inputs (receives)

information into the node.

Fire	on	Start
vuo.event.fireOnStart

Started

Make	Text	Image
vuo.image.make.text

Hello	World! Text
Helvetica	96pt Font

0 Rotation
Auto Wrap	Width

Render	Image	to	Window
vuo.image.render.window2

Image
Set	Window	Description

Updated	Window

Revised November 24, 2021

2 The basics Page 35 of 162

In the above composition, the Text input port of the Make Text Image node inputs an event, which

causes the node to execute. The Image input port of the Render Image to Window node inputs the

event and an image. When the node executes, it uses that image to do its job of rendering an image

to a window.

You may have noticed that, in the above composition, some input ports have data that’s attached to

the port rather than coming in through a cable. The Text input port has the data “Hello World!”, and

the Font input port has as its data a description of a Helvetica font. These are called constant values

because they don’t vary the way that data coming through a cable can. Like data coming in through

cables, constant values are also used by the node when it executes. If a port has a constant value, you

can edit it by double-clicking on it.

After a node executes, it outputs (sends) information through its output ports. The information out-

putted — events and possibly data — can then travel along cables from the output ports to other input

ports.

input ports output ports

Fetch Image
vuo.image.fetch

URL

Receive Mouse Moves
vuo.mouse.move2

Window
Any Modifier Key

Moved To

Select Event Output
vuo.select.out.boolean.event

False Which
In

False Option
True Option

On most nodes, every event that comes in through one or more inputs ports goes out of all of the

output ports. But there are a couple of exceptions.

One exception is trigger ports. Although trigger ports are output ports, events that come in through

input ports are never outputted through them. Trigger ports can only fire new events, not transmit

existing events.

The other exception is for nodes whose input ports have thick lines along their right side, which are

called event walls and event doors. If an event comes into a node only through an input port with a

wall, then the event won’t go out any of the node’s output ports. If an event comes in only through

an input port with a door, then the event may or may not go out of some or all of the node’s output

ports — the exact behavior depends on the node, and is explained in the node’s documentation.

Both for trigger ports and for walls
and doors, the thick line is a hint
to remind you that events may be
blocked.

Tip

Revised November 24, 2021

2 The basics Page 36 of 162

event wall
on a data and event port

event door
on a data and event port

event wall
on an event-only port

event door
on an event-only port

Decode Movie Image
vuo.video.decodeImage

URL
0 Frame Time

Loop Loop

Measure Time
vuo.time.measureTime

0 Time
Start
Pause
Reset

Select Event Output
vuo.select.out.boolean.event

False Which
In

False Option
True Option

The composition below, Select Stripes (Ablage Öffnen Beispiel Auswählen), demonstrates one way

that event doors can be useful. This composition displays one of two animations at a time, switching

between them each time the mouse is pressed. The doors on the Select Input node’s False Option and

True Option input ports allow the node to let the stream of events and images from one animation

through while blocking the stream from the other animation.

Change	Speed
vuo.time.changeSpeed

Time
0.25 Speed

Reset

Fire	on	Display	Refresh
vuo.event.fireOnDisplayRefresh

Refreshed	at	Time

Make	Stripe	Image
vuo.image.make.stripe

Color	A
Color	B

0.25 Stripe	Width
1 Sharpness
0 Angle

0.02 Coverage
X					(X,0) Center

1024 Width
768 Height

Make	Stripe	Image
vuo.image.make.stripe

Color	A
Color	B

0.25 Stripe	Width
1 Sharpness
90 Angle

0.02 Coverage
Y					(0,Y) Center

1024 Width
768 Height

Receive	Mouse	Buttons
vuo.mouse.button2

Window
Left Button
Any Modifier	Key

Pressed
Force	Pressed

Pressure	Changed
Released

Render	Image	to	Window
vuo.image.render.window2

Image
Set	Window	Description

Updated	Window

Select	Input
vuo.select.in.boolean

Which
False	Option
True	Option

Toggle
vuo.logic.toggle

Toggle

If you’re not sure if a node is letting events through or blocking them, you can enable Show Events or

look at Port Popovers to see where events are flowing.

Revised November 24, 2021

2 The basics Page 37 of 162

2.7 Events and data enter and exit a composition through published

ports

Earlier, you learned that a composition is made up of nodes, each of which is a building block that

has a specific job to perform. If you think about it, the composition as a whole also has a specific job

to perform. It’s like a node, but on a larger scale. A composition can even be used as a building block

within another composition or another application.

Just as a node can input and output information through its ports, a composition can input and output

information through published ports. If a composition has published ports, Vuo shows them in sidebars

along the left and right sides of the composition canvas.

Above is an example of a composition with published ports: Generate Checkerboard Image (Ablage

Öffnen Beispiel Bildgenerator). It inputs events and data through published input ports called

width, height, and time. It outputs events and data through a published output port called outputIm-

age.

You can use this composition as a building block, called a subcomposition, inside of another composi-

tion. Below is what that looks like — the published input and output ports of the composition become

the input and output ports of a node. (You’ll learn more about subcompositions in Using subcomposi-

tions inside of other compositions.)

Revised November 24, 2021

2 The basics Page 38 of 162

Because this composition has a certain set of published ports, making it an image generator, you can

use it in other special ways. You can install it as a plugin for a VJ application that supports Vuo plugins.

You can run it in Vuo to see a preview of the video stream it would generate in a VJ application. You

can export a movie of the video stream. (More about image generators is in Making compositions fit

a mold with protocols.)

In all of these different ways of executing the composition — as a subcomposition, within a VJ applica-

tion, as a preview, for a movie export — events and data enter the composition through its published

input ports, flow through the composition, and exit through the published output ports.

Revised November 24, 2021

3 How events and data travel through a composition Page 39 of 162

3 How events and data travel through a composi-

tion

Events are what make things happen in a composition. As you get to know Vuo, you’ll be able to look

at a composition and imagine how an event comes out of a trigger port, flows through a cable into a

node’s input port, and either gets blocked or flows through the node’s output ports and into the next

cables. The previous section gave an overview of how that works. This section describes the process

in detail.

3.1 Where events come from

Each event is fired from a trigger port, a special kind of output port on a node.

Fire Periodically
vuo.time.firePeriodically2

1 Seconds Fired at Time

event-only trigger port

Fire on Start
vuo.event.fireOnStart

Started

Receive Live Video
vuo.video.receive2

Default Device
Auto Width
Auto Height

Received Frame

Receive Mouse Buttons
vuo.mouse.button2

Window
Left Button
Any Modifier Key

Pressed
Released

data-and-event trigger ports

Some trigger ports fire events in response to things happening in the world outside your composition.

For example, the Receive Mouse Moves node’s trigger port fires an event each time the mouse is

moved. The Play Movie node’s trigger port fires a rapid series of events (for example, 30 per second),

so that you can display images in rapid sequence as a movie. Similarly, the Fire on Display Refresh

Revised November 24, 2021

3 How events and data travel through a composition Page 40 of 162

node’s Refreshed at Time trigger port fires a rapid series of events, so that you can use these events

to display graphics in rapid sequence as an animation.

Other trigger ports fire events in response to things happening within the composition. For example,

the Fire on Start node’s trigger port fires an event when the composition starts. The Fire Periodically

node’s trigger port fires events at a steady rate while the composition is running. A node’s trigger port

can even fire in response to an event received by the node, as happens with the Spin Off Event node.

(However, this is a different event than the one that was received by the node. For more information,

see the section Run slow parts of the composition in the background.)

Some nodes block events until a certain condition is met. The node Became True, for example, only

lets an event through when the condition changes from false to true. These nodes are not trigger

nodes, since they don’t create events, but they control when events are output.

3.2 How events travel through a node

An event can come into a node through cables connected to one or more of its input ports. When an

event reaches the node’s input ports, the node executes, and it may or may not send the event through

its output ports.

3.2.1 Input ports

event-only input ports

data-and-event input ports

Play Movie
vuo.video.play

Play
Pause

0 Set Time
URL

Loop Loop
1 Playback Rate

Auto Optimization

Decoded Video
Decoded Audio

Finished Playback

An input port is the location on the left side of the node where you can enter data directly, connect

a data-and-event cable, or connect an event-only cable. When an event arrives at an input port, it

causes the node to execute and perform its function based on the data present at the node’s input

ports.

Revised November 24, 2021

3 How events and data travel through a composition Page 41 of 162

3.2.1.1 Event walls and doors Some nodes, like the ones shown below, have input ports that block

an event. This means the node will execute, but the event associated with that data won’t travel

through any output ports. Event blocking is useful when you want part of your composition to execute

in response to events from one trigger port but not events from another trigger port, or when you’re

creating a feedback loop.

event wall
on a data and event port

event door
on a data and event port

event wall
on an event-only port

event door
on an event-only port

Decode Movie Image
vuo.video.decodeImage

URL
0 Frame Time

Loop Loop

Measure Time
vuo.time.measureTime

0 Time
Start
Pause
Reset

Select Event Output
vuo.select.out.boolean.event

False Which
In

False Option
True Option

Ports that always block events have a solid semi-circle (like the URL port above) or a solid chevron

(like the Start port above). This is called an event wall. The node must receive an event from another

port without an event wall for the results of the node’s execution to be available to other nodes.

The event wall is visually placed in-
side the node to indicate that the
event gets blocked inside the node
(as it executes) — rather than get-
ting blocked before it reaches the
node.

Tip

Ports that sometimes block events have a broken semi-circle (like the Which port above) or a broken

chevron (like the Time port above). This is called an event door. Event doors are useful when you

want to take events from a trigger port and filter some of them out or route them to different parts of

the composition. For example, in the Select Output node, the value at the Which port will determine

whether the data-and-event coming into the In port will be transmitted to the Option 1 port or the

Option 2 port.

The manual section How events travel through a composition has more information on how events

move through a composition.

3.2.1.2 Port actions Some input ports cause the node to do something special when they receive

an event. In the Count within Range node shown below, the Increment, Decrement, and Set Count

ports each uniquely affect the count stored by the node — upon receiving an event, they increment

Revised November 24, 2021

3 How events and data travel through a composition Page 42 of 162

the count, decrement the count, or change the count to a specific number. Likewise, in the Display

Console Window node, the Write Line input port does something special when it receives an event —

it writes a line of text to the console window. Each of these ports has a port action.

port actions

Count within Range
vuo.math.countWithinRange

Increment
Decrement
Set Count
Minimum
Maximum

Wrap Wrap Mode

Display Console Window
vuo.console.window

Write Line Typed Line
Typed Word

Typed Character

If an input port has a port action, then the node does something different when that input port re-

ceives an event than it does when any other input port receives an event. What counts as “something

different”? Either the node outputs different data (immediately or later) or the node affects the world

outside the composition differently.

Looking again at the Count within Range node, you can see that the node has some input ports with

port actions and some without. For the ports without port actions — Minimum, Maximum, and Wrap

Mode — the node will output the same number regardless of whether the event causing the node to

execute has hit one of these ports. The node uses the data from these ports and doesn’t care if they

received an event. For each of the ports with port actions, however, it makes a difference whether the

event has hit the port. The Increment port, for example, only affects the count if the event came in

through that input port.

Rather than affecting the node’s output data, as in the Count within Range node, the Display Console

Window node’s port action affects the world outside the composition. When theWrite Line input port

receives an event, it doesn’t affect the data coming out of the node’s output ports. Rather, it affects

what you see in the console window.

You can recognize an input port with a port action by the little triangle to the right of the port name.

In Vuo, the triangle shape symbolizes events. The little triangle for the port action reminds you that

this port does something unique when it receives an event.

3.2.2 Output ports

When an event executes a node, the event can travel to downstream nodes using the output ports.

Like input ports, output ports can be data-and-event or event-only.

Revised November 24, 2021

3 How events and data travel through a composition Page 43 of 162

event-only output ports

data-and-event output ports

Receive Mouse Moves
vuo.mouse.move2

Window
Any Modifier Key

Moved To

Became True
vuo.event.becameTrue

False Value

Fire on Start
vuo.event.fireOnStart

Started

Divide with Remainder
vuo.math.divide.VuoInteger

0 A
1 B

Quotient
Remainder

3.2.2.1 Trigger ports Although trigger ports can create events, they never transmit events that came

into the node through an input port (hence the thick line to the left of each trigger port — an event

wall), nor do they cause any other output ports to emit events.

3.3 How events travel through a composition

Now that you’ve seen how events travel through individual nodes, let’s look at the bigger picture: how

they travel through a composition.

This section is about Vuo’s mecha-
nisms for control flow and concur-
rency.

Note for
text programmers

3.3.1 The rules of events

Each event travels through a composition following a simple set of rules:

1. An event travels forward through cables and nodes. Along each cable, it travels from the output

port to the input port. Within each node, it travels from the input ports to the output ports

(unless it’s blocked). An event never travels backward or skips around.

2. One event can’t overtake another. If multiple events are traveling through the same cables and

nodes, they stay in order.

Revised November 24, 2021

3 How events and data travel through a composition Page 44 of 162

3. An event can split. If there are multiple cables coming out of a trigger port or other output

ports, then the event travels through each cable simultaneously.

4. An event can rejoin. If the event has previously split and gone down multiple paths of nodes

and cables, and those paths meet with multiple cables going into one node, then the split event

rejoins at that node. The node waits for all pieces of the split event to arrive before it executes.

5. An event can be blocked. If the event hits an event wall or door on an input port, then although

it will cause the node to execute, it may not transmit through the node.

6. An event can travel through each cable at most once. If a composition could allow an event to

travel through the same cable more than once, then the composition is not allowed to run. It

has an infinite feedback loop error.

Let’s look at how those those rules apply to some actual compositions.

3.3.2 Straight lines

The simplest event flow in a composition is through a straight line of nodes, like the composition

below.

Count
vuo.math.count

1 Increment
1 Decrement
0 Set	Count

Display	Console	Window
vuo.console.window

Value					Summary Write	Line
Clear

Typed	Line
Typed	Word

Typed	Character

Fire	Periodically
vuo.time.firePeriodically2

1 Seconds Fired	at	Time

In this composition, the Fired at Time trigger port fires an event every 10 seconds. Each event travels

along cables and through the Count node, then the integer-to-text type converter node, then Display

Console Window node. The event is never split or blocked.

3.3.3 Splits and joins

When you run a composition in Vuo, multiple nodes can execute at the same time. This takes advantage

of your multicore processor to make your composition run faster.

Revised November 24, 2021

3 How events and data travel through a composition Page 45 of 162

1
2

Add
vuo.math.add

Values

Count
vuo.math.count

1 Increment
1 Decrement
0 Set	Count

Count
vuo.math.count

1 Increment
1 Decrement
0 Set	Count

Display	Console	Window
vuo.console.window

Value					Summary Write	Line
Clear

Typed	Line
Typed	Word

Typed	Character

Fire	Periodically
vuo.time.firePeriodically2

1 Seconds Fired	at	Time

In this composition, the two Count nodes are independent of each other, so it’s OK for them to execute

at the same time. When the Fire Periodically node fires an event, the upper Count node might execute

before the lower one, or the lower one might execute before the upper one, or they might execute at

the same time. It doesn’t matter! What matters is that the Add node waits for input from both of the

Count nodes before it executes.

The Add node executes just once each time Fire Periodically fires an event. The event branches off to

the Count nodes and joins up again at Add.

3.3.4 Multiple triggers

1
2

Add
vuo.math.add

Values

Count
vuo.math.count

1 Increment
1 Decrement
0 Set	Count

Count
vuo.math.count

1 Increment
1 Decrement
0 Set	Count

Display	Console	Window
vuo.console.window

Value					Summary Write	Line
Clear

Typed	Line
Typed	Word

Typed	Character

Fire	Periodically
vuo.time.firePeriodically2

1 Seconds Fired	at	Time

Fire	Periodically
vuo.time.firePeriodically2

1 Seconds Fired	at	Time

In this composition, the Add node executes each time either Fire Periodically node fires an event. If

one of the Add node’s inputs receives an event, it doesn’t wait for the other input. It goes ahead and

executes.

Revised November 24, 2021

3 How events and data travel through a composition Page 46 of 162

If the two Fire Periodically nodes fire an event at nearly the same time, then the Count nodes can

execute in either order or at the same time. But once the first event reaches the Add node, the

second event is not allowed to overtake it. (Otherwise, the second event could overwrite the data on

the cable from Add to Display Console Window before the first event has a chance to reach Display

Console Window.) The second event can’t execute Add or Display Console Window until the first event

is finished.

Compare this composition to the one above it. Since in this composition the Fire Periodically nodes

can execute in either order, or at the same time, the results are unpredictable. When you want to

ensure events are executed by separate nodes at the same time, use the same event.

3.3.5 Feedback loops

You can use a feedback loop to store and build upon a result over time. This example composition

demonstrates (Ablage Öffnen Beispiel Data Twirl Image Repeatedly):

Allow	First	Event
vuo.event.allowFirst

Event
Reset Fetch	Image

vuo.image.fetch

Aerial.jpg URL

Fire	on	Display	Refresh
vuo.event.fireOnDisplayRefresh

Refreshed	at	Time

Hold	Value
vuo.data.hold2

Update
Value

Make	Random	Value
vuo.noise.random

(-1,	-1) Minimum
(1,	1) Maximum

Render	Image	to	Window
vuo.image.render.window2

Image
Set	Window	Description

Updated	Window

Select	Latest
vuo.select.latest.2

Option	1
Option	2 Twirl	Image

vuo.image.twirl2

Image
Center

90 Angle
0.25 Radius

Starting with the image from Fetch Image, this composition adds another twirl to the image with each

display refresh. Over time, the entire image accumulates twirls upon twirls.

The orange and gray nodes, and the cables between them, comprise the feedback loop. Let’s focus on

the part of the loop that stores and repeatedly processes the image: Hold Value, Select Latest, and

Twirl Image. Each time Fire on Display Refresh fires an event:

• The event enters the Hold Value node’s Update input port.

• The Hold Value node executes, outputting the event plus the image produced the previous time

around the loop (or an empty image if this is the first time around).

• The event plus image enters the Select Latest node’s Option 2 input port.

Revised November 24, 2021

3 How events and data travel through a composition Page 47 of 162

• The Select Latest node executes, outputting the event plus the image from Hold Value (or the

original image from Fetch Image if this is the first time around).

• The event plus image enters the Twirl Image node’s Image input port.

• The Twirl Image node executes, outputting the event plus an image with one additional twirl.

• The event plus image hits the Hold Value node’s Value input port.

• The Hold Value node executes, although it doesn’t have any visible effect. It doesn’t output

any event or data because the event is blocked at the input port’s event wall.

With each event fired from Fire on Display Refresh, these steps repeat and the image gains another

twirl.

For each event from Fire on Display Refresh, when exactly does the Hold Value node output an image

to Render Image to Window? The first time Hold Value executes, the second time, or both times? The

answer is: Only the first time.

• The first time Hold Value executes:

– The event hits the Update input port.

– The node executes.

– The event plus data travels out of the output port through all connected cables, including

the one to Render Image to Window.

• The second time Hold Value executes:

– The event hits the Value input port.

– The node executes.

– Nothing further happens. The event is blocked by the wall on the input port.

3.3.6 Summary

You can control how your composition executes by controlling the flow of events. The way that you

connect nodes with cables — whether in a straight line, a feedback loop, or branching off in different

directions — controls the order in which nodes execute. The way that you fire and block events — with

trigger ports and with event walls and doors — controls when different parts of your composition will

execute.

Each event that’s fired from a trigger port has its own unique identity. The event can branch off along

different paths, and those paths can join up again at a node downstream. When the same event joins

up, the joining node will wait for the event to travel along all incoming paths and then execute just

once. But if two different events come into a node, the node will execute twice. So if you want to

make sure that different parts of your composition are exactly in sync, make sure they’re using the

same event.

Revised November 24, 2021

3 How events and data travel through a composition Page 48 of 162

3.4 How data travels through a composition

Most often, data and events travel together. In most compositions, including the example below, the

majority of cables are data-and-event (thick) cables. Whenever an event travels through one of these

cables, it’s accompanied by a piece of data — like the color that travels from Select Input to Make

Rectangle Layer.

1
2
3

Make	Rectangle	Layer
vuo.layer.make.rect

Color
Center Anchor
(0,	0) Position

0 Rotation
2 Width
2 Height
1 Sharpness
0 Roundness
1 Opacity

Make	Rectangle	Layer
vuo.layer.make.rect

Color
Center Anchor
(0,	0) Position

0 Rotation
0.3 Width
0.1 Height
1 Sharpness

0.5 Roundness
1 Opacity

Make	Toggle	Button
vuo.ui.make.toggle

Window
Bright Label
True Set	Value

Center Anchor
(0,	0) Position

Theme

Updated	Layer
Changed

Turned	On
Turned	Off

Render	Layers	to	Window
vuo.layer.render.window2

Layers
Off Multisampling

Set	Window	Description

Updated	Window

Select	Input
vuo.select.in.boolean

Which
False	Option
True	Option

The antenna symbols in this compo-
sition indicate a hidden cable from
the Updated Window output port to
the Window input port. To hide a
cable, right-click on it and select
Ausblenden .

Tip

When an event and its companion piece of data reach a node’s input port, the event causes the node

to do its job, while the data affects how the node does its job. (This is explained further in How

compositions process data.)

Data generally doesn’t travel through a node in the same way that an event does. Instead, the node,

informed by its input data, produces other data as output.

3.4.1 Ignoring data

Sometimes you don’t want the data that a node outputs. You just want the events.

One example is the composition below. The Fire Periodically node’s trigger port fires an event along

with data — the number of seconds since the composition started — every 3 seconds. The Speak node

doesn’t need or want that data. It just needs the event.

To create an event-only cable like the one below, start dragging from the Fired at Time port (pulling

out a data-and-event cable), then drop the end of the cable onto the Speak input port. When you

connect a data-and-event cable to an event-only port, the cable automatically becomes event-only.

Revised November 24, 2021

3 How events and data travel through a composition Page 49 of 162

Fire	Periodically
vuo.time.firePeriodically2

3 Seconds Fired	at	Time

Send	Live	Audio
vuo.audio.send2

Default Device
Send	Channels

Speak
vuo.audio.speak

Speak
Stop

Hello? Text
Alex Voice
Auto Words	per	Minute
Auto Pitch
Auto Modulation

Spoken	Channels
Finished	Speaking

It’s also possible to connect an event-only cable between a pair of data-and-event ports. This can be

useful with the Count node, as shown below. Each time the Count node executes, it adds the amount

in its Increment port to the total that it outputs. Let’s say you want to count up by 1 every 10 seconds.

To control the timing, you can use the events from the Fire Periodically node’s trigger port, but you

need to ignore the data from that port. You can accomplish this with an event-only cable.

To create this event-only cable, start dragging from the Fired at Time port. Hold down ⇧ (Shift) to

change the cable from data-and-event to event-only, then drop the end of the cable onto the Increment

port.

Count
vuo.math.count

1 Increment
1 Decrement
0 Set	Count

Display	Console	Window
vuo.console.window

Value					Summary Write	Line
Clear

Typed	Line
Typed	Word

Typed	Character

Fire	Periodically
vuo.time.firePeriodically2

1 Seconds Fired	at	Time

Alternatively, you can drag the cable from the Fired at Time port and drop it into the title area of the

New in Vuo 2.0Count node. Dropping the end of a cable onto a node’s title area changes the cable to event-only and

connects it to the node’s first non-walled port.

3.4.2 Data flow without an event

There are only two cases in which data can travel without an event: from a drawer to its attached

node and from a published input port through directly connected cables. Both are explained later, in

the section Inputting data.

In all other cases, the only way that data can travel through a composition is when accompanied by

an event.

Revised November 24, 2021

3 How events and data travel through a composition Page 50 of 162

3.5 Solving problems with event flow

Events are a powerful tool, as they make it possible for you to control exactly when each node in your

composition executes. However, events fired at the wrong place or time can lead to problems. This

section covers several problems you might encounter and the ways that Vuo can help you identify and

fix them.

3.5.1 “Infinite feedback loop” error

One of the rules of events is that an event can travel through each cable at most once. This rule comes

into play when your composition has a feedback loop.

As you learned earlier in this section, feedback loops are a useful construct for accumulating changes

over time. You just need to regulate the flow of data through the loop. Here are examples of a working

(regulated flow) and a non-working (unregulated flow) feedback loop:

Revised November 24, 2021

3 How events and data travel through a composition Page 51 of 162

In the working feedback loop:

• The event enters the Hold Value node’s Update input port and travels through to the output

port.

• The event enters the Add node’s input port and travels through to the output port.

• The event hits the Hold Value node’s Value input port and is blocked by the event wall.

In the non-working feedback loop, there’s no wall to block the event from looping through the Add

node over and over. Vuo reports an infinite feedback loop and doesn’t allow the composition to run.

Comparing the two compositions above, you can see that one way to fix an infinite feedback loop is

to insert a node with an event wall, such as Hold Value.

Another way to fix an infinite feedback loop is to get rid of the feedback loop. In the composition

above, you could replace the feedback loop with a Count node. The Enqueue node and the Blend

Image with Feedback node can also take the place of some feedback loops.

Rarely, you might encounter situations where Vuo reports an infinite feedback loop even though you

can logically reason that the loop is finite — like in this composition:

The event would only circle the loop 10 times, so it’s not “infinite”. Nevertheless, you’ll need to re-

structure your composition to avoid the error. When iterating through a fixed number of items, you

can use a Build List, Process List, or Spin Off Events node. (Alternatively, you can circumvent the error

by inserting a Spin Off Event node in the loop, but be aware that you could create an actual infinite

feedback loop that causes your composition to freeze.)

Revised November 24, 2021

3 How events and data travel through a composition Page 52 of 162

3.5.2 “Deadlocked feedback loop” error

In most cases, an event needs to travel through all of the cables leading up to a node before it can

reach the node itself. (The one exception is the node that starts and ends a feedback loop, since it

has some cables leading into the feedback loop and some coming back around the loop.) A problem

can arise if the nodes and cables in a composition are connected in a way that makes it impossible for

an event to travel through all the cables leading up to a node before reaching the node itself. This

problem is called a deadlocked feedback loop. If your composition has one, Vuo will tell you so and

won’t allow your composition to run.

This composition is an example of a deadlocked feedback loop. Because the topHold Value node could

receive an event from the Fire on Start node through the cable from the bottom Hold Value node, the

top Hold Value node needs to execute after the bottom one. But because the bottom Hold Value node

could receive an event from the Fire on Start node through the cable from the top Hold Value node,

the bottom Hold Value node needs to execute after the top one. Since each Hold Value node needs

to execute after the other one, it’s impossible for an event to travel through the composition. To fix a

deadlocked feedback loop, you need to remove some of the nodes or cables involved.

3.5.3 Buildup of events

What if a trigger port is firing events faster than the downstream nodes can process them? Will the

events get queued up and wait until the downstream nodes are ready (causing the composition to lag),

or will the composition skip some events so that it can keep up? That depends on the trigger port’s

event throttling setting.

Revised November 24, 2021

3 How events and data travel through a composition Page 53 of 162

Each trigger port has two options for event throttling: enqueue events or drop events. If enqueuing

events, the trigger port will keep firing events regardless of whether the downstream nodes can keep

up. If dropping events, the trigger port won’t fire an event if the event would have to wait for the

downstream nodes to finish processing a previous event (from this or another trigger port).

Each of these options is useful in different situations. For example, suppose you have a composition

in which a Play Movie node fires events with image data and then applies a series of image filters. If

you want the composition to display the resulting images in real-time, then you’d probably want the

Play Movie node’s trigger port to drop events to ensure that the movie plays at its original speed. On

the other hand, if you’re using the composition to apply a video post-processing effect and save the

resulting images to file, then you’d probably want the trigger port to enqueue events.

When you add a node to a composition, each of its trigger ports may default to either enqueuing or

dropping events. For example, the Play Movie node’s trigger port defaults to dropping events, while

each of the Receive Mouse Clicks node’s trigger ports defaults to enqueuing events.

You can right-click on a trigger port and go to the Ereignisdrosselung einstellen menu to view or change

whether the port enqueues or drops events.

Revised November 24, 2021

4 How compositions process data Page 54 of 162

4 How compositions process data

Data is information such as numbers, text, and images. Nodes use the data in their input ports to

control how they do their job. The goal of a composition is almost always to create or transform data

in some way.

4.1 Data types

Numbers, text, and images are all examples of data — but they’re not all the same type of data. You

can do things with a number (such as calculate the square root) that wouldn’t make sense with a

sentence of text. Similarly, you can do things with an image (such as applying a kaleidoscope filter)

that wouldn’t make sense with a number.

In Vuo, data is categorized by data type. A node can only input and output certain data types that

make sense with the job that the node does, such as calculating numbers or filtering images.

4.1.1 Basic data types

Here are the most common data types in Vuo:

Name Examples Description

Integer -5; 0; 103 A positive or negative whole number

Real -1.2; 0.0; 33.333 A positive or negative decimal number

Text Thank you! A sequence of characters

Boolean true; false “Yes” (true) or “no” (false)

2D Point (0.1, -1.5) A position in 2-dimensional space

3D Point (0.1, -1.5, 0.8) A position in 3-dimensional space

4D Point (0.1, -1.5, 0.8, 1.0) A position in 4-dimensional space

Color A combination of hue, saturation, and lightness

Image A rectangular grid of pixels

Layer A 2D shape or image that can be stacked with others

Scene Object A 3D shape that can be placed with others in a scene

If your computer is configured to use a comma instead of a period for the decimal mark

(Systemeinstellungen Sprache & Region), then Vuo displays numerical types accordingly.

Vuo has dozens of other data types, many of them specific to certain tasks (such as processing audio

Revised November 24, 2021

4 How compositions process data Page 55 of 162

or receiving keyboard input). You’ll learn about those data types in the process of learning how to

perform the tasks.

You can see which data type a port has by clicking on the port to open its port popover.

When you start dragging a cable from a port, Vuo shows you which ports you can connect the other

end of the cable to — ports that have a compatible data type — by fading out all other ports. Ports

that remain opaque have the same data type as the original port. Ports that are slightly faded have a

data type that is different but related, so it’s possible to convert from one data type to the other.

4.1.2 Type-converter nodes

The two ports at either end of a cable always have the same data type. If you need to connect an

output port of one data type to an input port of a different but related data type, you can insert a

type-converter node. A type-converter node’s job is to translate data from one type to another.

When you drop a cable endpoint onto a port of a different but compatible data type, either Vuo will ask

you to choose which type-converter node to use or, if there’s only one type-converter node available

for that pair of data types, Vuo will go ahead and insert it.

For example, if you want to connect a Real output port to an Integer input port, you can choose the

Round, Round Up, or Round Down node to convert the Real (number with a decimal point) to an Integer

(number without a decimal point).

Revised November 24, 2021

4 How compositions process data Page 56 of 162

Vuo inserts the type-converter node in a collapsed form to save space. You can still click on the node

to see its uncollapsed form and description in the Node Documentation Panel.

4.1.3 List data types

For every single-value data type in Vuo, there’s a corresponding list data type.

For example, the Split Text node inputs a single Text and separates it into parts. Each part is a Text.

The node outputs the collection of parts as a List of Text.

Revised November 24, 2021

4 How compositions process data Page 57 of 162

A list is a sequence of data items. Lists are useful when you want to work with a collection of data

items instead of just one.

4.1.4 Dictionary data types

With a list, each item is identified by its position in the sequence. With a different kind of collection

called a dictionary, each item is instead identified by a name or key.

For example, the Calculate node’s Values input port has a dictionary data type, specifically Dictionary

of Text keys and Real values. The keys are the names of variables in a math expression. The values are

the numerical values that the node should substitute in place of the variables to calculate the result.

1 height
length
width

Calculate
vuo.math.calculate

length	*	width	*	height Expression
Values

Get	2D	Point	Values
vuo.point.get.VuoPoint2d

X
Y

Receive	Mouse	Moves
vuo.mouse.move2

Window
Any Modifier	Key

Foreground App	Focus

Moved	To

4.1.5 Ports with changeable data types

Some nodes can work with many different types of data. For example, the Scale node can scale Reals,

2D Points, 3D Points, or 4D Points. The Changed node can input a Text value, an Image, a Color, or

many other types of data.

Revised November 24, 2021

4 How compositions process data Page 58 of 162

Scale
vuo.math.scale

Value
Start
End
Scaled	Start
Scaled	End

False Limit	to	Range

Changed
vuo.event.changed2

Value

When using nodes that are flexible about the type of data they can work with, you can choose the

data type that you need for your composition.

To see the data types that a port can be changed to, right-click on the port and look

at the Legen Sie den Datentyp fest submenu. (Only ports with changeable types have a

Legen Sie den Datentyp fest submenu.)

The Set Data Type menu now ap-
pears for all changeable data types,
not just generic data types. You no
longer need to change the data type
back to generic before changing it
to a different type.

Changed in Vuo 2.0

4.1.5.1 Generic data types The Generisch menu item means that the port has a generic data type

— a stand-in for when the port’s data type hasn’t been decided yet.

For example, when you first put a Hold Value node on the canvas, its Value input port and Held Value

output port both have a generic data type.

Revised November 24, 2021

4 How compositions process data Page 59 of 162

4.1.5.2 Changing the data type When a port has a changeable data type, one way to change it is

to use the Legen Sie den Datentyp fest submenu. Another is to connect a cable.

When you start drawing a data-and-event cable from a port with a changeable data type (or indeed

from any port), Vuo fades out the ports with incompatible data types, leaving the ports that the cable

can potentially connect to. Here are some examples of the kinds of connections you can make.

Connect an unchangeable port to a generic port— TheMake Cube node has aMaterial input port that

controls how the sides of the cube are painted. The port has a changeable data type that starts out

generic and can be changed to Color, Graphics Shader, or Image. If you put a Make Cube node on the

canvas and connect a cable carrying Image data to it, then the port’s data type changes from generic

to Image.

Connect an unchangeable port to a changeable port — Following on the previous example, suppose

you change your mind and decide you’d like to paint the cube with a Graphics Shader instead of an

Revised November 24, 2021

4 How compositions process data Page 60 of 162

Image. If you connect a cable between the Material port and a port of type Graphics Shader, then the

Material port’s data type changes from Image to Graphics Shader.

Sometimes there are different ways that you could make the connection depending on what you’re

trying to accomplish, so Vuo presents some suggestions and asks you to choose. For example, if you’re

connecting an Add node’s Real output port to a 2D Point input port, you might want to change the

Add node’s output port from Real to 2D Point. Or you might want to keep the Add node’s output port

a Real and use it to control the X-coordinate of the 2D Point. You can choose either of those options

(among others) from the menu presented when you drop the cable onto the 2D Point port.

This menu now gives you the option
to change the port’s data type.

Changed in Vuo 2.0

Connect a changeable port to a changeable port—When connecting two ports that both have change-

able data types, you’re likely to have even more options. If you drag a cable from an Add node’s Real

Revised November 24, 2021

4 How compositions process data Page 61 of 162

output port and drop it onto a different Add node’s 2D Point input port, you can opt to change the in-

put port’s data type to Real or insert various type converters. If you drag a cable in the other direction,

from the input port to the output port, you instead have the option to change the output port’s data

type to 2D Point.

4.1.5.3 Groups of ports that share the same data type When you connect cables between two ports

of changeable data types, their data types become synchronized. If you change one port’s data type,

then the other port’s data type automatically changes to match.

Some nodes have ports that are synchronized with each other. The Subtract node is an example. It

can subtract two Integers, resulting in another Integer; two 3D Points, resulting in another 3D Point;

Revised November 24, 2021

4 How compositions process data Page 62 of 162

and so on. When you change the data type of one of the node’s ports, that automatically changes the

data types of the other ports as well.

On a few nodes, one group of ports shares the same data type and a separate group of ports shares

another data type. The Process List node is an example. The Start Processing port has a list data type,

and the Item port outputs the items of that list. So if Start Processing has type List of Text, Item must

have type Text. Similarly, the Finished Processing port has a list data type, and its items must match

the type of Processed Item. But Processed Item doesn’t have to match the type of Item.

You can see which ports on a node share a data type by selecting Legen Sie den Datentyp fest

Generisch for each port, then opening the port popovers and observing the numbers on the generic

data types (generic #1, generic #2, etc.).

Revised November 24, 2021

4 How compositions process data Page 63 of 162

4.2 Inputting data

You’ve learned how data flows through a composition (How events and data travel through a compo-

sition). But how does the data get into the composition in the first place?

There are two main ways. One is to pull in data from the world outside the composition — files on your

computer, input devices such as a mouse or video camera, information communicated over a network,

and so on. A good starting point to learn about this is to search the Node Library for nodes whose

titles begin with Receive.

The other way to get data into a composition is to enter it yourself. This section explains how.

4.2.1 Editing data in a node’s input port

If an input port doesn’t have a data-and-event cable connected to it, then it has a constant value.

Rather than being replaced with new data coming in from a cable, the port’s value remains the same

as the composition runs.

For many data types, the constant value is displayed alongside the input port. You can double-click

on the constant value to open an input editor and edit the value.

Revised November 24, 2021

4 How compositions process data Page 64 of 162

Different data types have different kinds of input editors. Some data types aren’t editable. Double-

clicking on them doesn’t open an input editor. The only way to change their value is by connecting a

cable.

You can close most input editors (keeping the edits) by clicking on the canvas or pressing ↵ . In input

editors for Text data, since the ↵ key is taken, you can enter a linebreak with ⌥↵ . You can cancel

edits by pressing ⎋ .

After you edit an input port’s data, the new data will take effect the next time the node executes. If

there’s already a steady stream of events flowing through the node, like the Outline Image node below,

the new data will naturally enter into the flow.

Fire	on	Start
vuo.event.fireOnStart

Started

Outline	Image
vuo.image.outline

Frame					Image Image
RGB Channels

4 Radius
1 Intensity
0 Threshold

Bipolar Range

Play	Movie
vuo.video.play

Play
Pause

0 Set	Time
NiceVideo.mp4 URL

Loop Loop
1 Playback	Rate

Auto Optimization

Decoded	Video
Decoded	Audio

Finished	Playback

Render	Image	to	Window
vuo.image.render.window2

Image
Set	Window	Description

Updated	Window

If events only rarely hit the node, like theMake Text Layer node below, then, in order to see the results

of the new data, you’ll have to either restart the composition or fire an event into the node manually.

To fire an event manually, right-click on one of the node’s input ports and select Feuerereignis .

1
2

Fire	on	Start
vuo.event.fireOnStart

Started

Make	Image	Layer
vuo.layer.make.realSize2

Frame					Image Image
(0,	0) Center

1 Opacity
True Preserve	Physical	Size

Make	Text	Layer
vuo.layer.make.text2

Funded	by	the	Arts	Council Text
Avenir-Medium	24pt Font

Center Anchor
(0,	-0.4) Position

0 Rotation
Auto Wrap	Width

1 Opacity

Play	Movie
vuo.video.play

Play
Pause

0 Set	Time
URL

Loop Loop
1 Playback	Rate

Auto Optimization

Decoded	Video
Decoded	Audio

Finished	Playback
Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

Revised November 24, 2021

4 How compositions process data Page 65 of 162

If you edit an input port value on a node that has a trigger port, the new data will take affect imme-

diately. You don’t have to fire an event into the node. For example, after you edit the Seconds input

port of a Fire Periodically node, the node immediately adjusts the rate at which it fires.

Fire	Periodically
vuo.time.firePeriodically2

1 Seconds Fired	at	Time

4.2.2 Editing data in a published input port

Like an input port on a node, a published input port can have a constant value. (The exception is

protocol published input ports, which are explained in Making compositions fit a mold with protocols.)

You can edit a published input port’s constant value by double-clicking on the port, which brings up

an input editor.

If the published input port has a numerical data type, you can also edit the input editor’s range. Right-

click on the published port and go to Details bearbeiten… . Suggested Min and Suggested Max are the

recommended lower and upper bounds of the data value. If both are set, then the input editor will

have a slider, a text field, and up and down arrows. Otherwise, the input editor will only have a text

field and up and down arrows. Suggested Step controls the step size of the up and down arrows.

If you’re running the composition as a standalone composition (not a subcomposition), after you edit a

published input port’s data, the new data will immediately flow through any cables directly connected

to the published input port — but no farther. This is a rare case in which data flows without an event.

For example, in the composition below, if you change the value of TextPosition from (0, 0) to (1, 1),

the value of the Position port on Make Text Layer immediately changes to (1, 1). But the Make Text

Layer node doesn’t execute and doesn’t affect any nodes downstream — so the text in the window

remains at (0, 0) for the moment. The next time Fire Periodically fires an event, the event hits Make

Text Layer, causes the node to execute with the new Position value, and travels onward along with

the resulting data to Render Layers to Window — so the text in the window now appears at (1, 1).

To learn about constant values of published input ports in subcompositions, see this section.

Revised November 24, 2021

4 How compositions process data Page 66 of 162

4.2.3 Inputting lists

When an input port has a list data type, you can either input the list as a whole (by connecting a cable

to the list port) or input each list item separately via the drawer attached to the port.

drawer

handle

You can change the number of list items by dragging the drawer’s handle (bar along the bottom)

up or down, or by right-clicking on the drawer and selecting Entfernen Sie den Eingangsanschluss or

Eingabeport hinzufügen .

4.2.4 Inputting dictionaries

The Calculate and Calculate List nodes each have a drawer attached to their dictionary input port.

The keys of the drawer adjust automatically when you edit the Expression input port’s data. (You can’t

resize this drawer like you can a list drawer.)

On other nodes, dictionary input ports don’t have drawers. Instead, you can connect a cable from the

output of a Make Dictionary node.

Revised November 24, 2021

5 How nodes can be used as building blocks Page 67 of 162

5 How nodes can be used as building blocks

Nodes are the building blocks of Vuo, which you can assemble in any way you can think of to create

compositions. When you download Vuo, it comes with a large set of nodes that support 2D and 3D

graphics, video, audio, networking, user interaction, and more. If you’ve purchased Vuo Pro, then you

have some bonus nodes available to you. Whether you’re using Vuo Community Edition or Vuo Pro,

you can also download nodes by third-party developers to add to your collection.

5.1 Finding out what nodes are available

Vuo has a list of all nodes called the Node Library. (If you don’t see it, go to Ansicht

Knotenbibliothek Knotenbibliothek anzeigen .) You can skim through the Node Library to see

what’s available, or use the search bar at the top. For example, if you’re wondering if Vuo has nodes

for working with hues, search for “hue” and you’ll find several nodes related to color. For search tips,

see Searching for nodes.

For a complete list of built-in nodes, you can go to the online node documentation.

For even more nodes, you can visit the node gallery. There, members of the Vuo community share

nodes that they’ve created.

5.2 Learning how to use a node

Each Vuo node has documentation, or in other words, a description of how it works. You can view this

description in the Node Documentation Panel (lower panel of the Node Library) after clicking on the

node in the Node Library or on the composition canvas.

Besides the documentation for individual nodes, there’s also documentation for node sets. At the top

of the Node Documentation Panel, most nodes have a link to their node set’s documentation. For

example, the Make 3D Object (vuo.scene.make) node has a link for vuo.scene, which provides

documentation that applies to nodes throughout the vuo.scene node set.

Documentation both for nodes and for node sets is available in the online node documentation.

Besides documentation, many nodes also come with example compositions, which demonstrate use

of the node within a composition. For nodes that have them, the example compositions are listed

near the bottom of the Node Documentation Panel.

Revised November 24, 2021

https://doc.vuo.org/2.4.0/node/
https://vuo.org/nodes
https://doc.vuo.org/2.4.0/node/

5 How nodes can be used as building blocks Page 68 of 162

5.3 Pro nodes

Pro nodes are only available in Vuo Pro, not in Vuo Community Edition. If a node is Pro, then the Node

Documentation Panel says so at the bottom. If you try to open a composition containing Pro nodes

using Vuo Community Edition, then you’ll be warned that you won’t be able to run the composition.

If you plan to share a composition that contains Pro nodes, keep in mind that Vuo users without Vuo

Pro can’t run the composition. If you want others to be able to use your composition even if they don’t

have Vuo Pro, consider exporting it to an app.

Pro nodes can be used when running compositions inside of another application (such as a VJ app), as

long as Vuo Pro has been activated on the computer running the application.

5.4 Deprecated nodes

As Vuo grows and changes with each version, new nodes are added while some older nodes become

deprecated, or obsolete. When a node is deprecated, that means there’s now a better way to accom-

plish that node’s job.

When a node becomes deprecated, compositions that contain the node will continue to work for the

time being. However, the node may stop working or be removed in a future version of Vuo. In com-

positions that you want to continue using for the long term, it’s a good idea to replace deprecated

nodes.

New in Vuo 2.0
To find all deprecated nodes in a composition, go to Bearbeiten Suchen Suchen… and type depre-

cated into the search box.

To replace a deprecated node, the first thing to try is to right-click on the node and go to Ändern .

If the first menu item is a node with the same title but a different node class name — for example,

you’ve clicked on a Make Image with Shadertoy (vuo.image.make.shadertoy) node and the menu

listsMake Image with Shadertoy (vuo.image.make.shadertoy2) — then the replacement is simple.

First, select that menu item to insert the new version of the node. Second, run your composition and

modify it as needed to work correctly with the new version of the node. For example, you might need

to adjust the input port values because the new version handles them differently. Consult the node

documentation to understand the differences.

If the Ändern menu doesn’t list an obvious replacement, try searching the Node Library for a node

with the same title. If you find one, add it to your composition in place of the deprecated node. As

above, consult the node documentation to understand the differences between the new version and

the deprecated version. Be sure to run your composition and adjust it as needed.

If you still haven’t found the new node(s) to replace the deprecated node with, check the release notes

or ask the community.

Revised November 24, 2021

https://vuo.org/download
https://vuo.org/community

5 How nodes can be used as building blocks Page 69 of 162

5.5 The built-in nodes

This section gives an overview of some of Vuo’s built-in nodes. The purpose is to give you a sense of

what you can accomplish with the built-in nodes and where to start. For more details, see the node

and node set documentation.

5.5.1 Graphics/video

Vuo comes with many different nodes for working with graphics. These can be roughly divided into

2D and 3D graphics (along with some nodes to convert between them).

For 2D designs and animations, the vuo.image and vuo.layer node sets are your starting point.

These let you arrange and manipulate shapes and images, and render them in a window or composite

image.

For 3D models and meshes, the vuo.scene node set is your starting point. It lets you load or build

3D objects, warp them, and arrange them within a scene, which you can render in a window or image.

When building 3D objects, two additional node sets are helpful: vuo.transform for positioning,

rotating, and scaling an object, and vuo.shader for painting a pattern or material on an object.

When working with 2D or 3D animations, the vuo.motion node set lets you control the path and

speed of a moving object.

For video, the vuo.video node set handles playing movies and receiving video from cameras. When

working specifically with the cameras on a Kinect, you can use the vuo.kinect node set. If you want

to send and receive video between Vuo compositions and other applications, there’s the vuo.syphon
node set.

Make Quad Layer and related nodes in the vuo.layer node set support projection mapping.

5.5.1.1 Vuo Coordinates When drawing graphics to a window or image, you need to understand

the coordinate system of the area you’re drawing to. For example, when you use the Render Scene to

Window node to display a 3D scene in a window, typically the point in your 3D scene with coordinates

(0,0,0) will be drawn at the center of the window. (If you’re not familiar with the concept of 2D and 3D

coordinates, see https://simple.wikipedia.org/wiki/Cartesian_coordinate_system and other references

to learn more.)

All of the built-in nodes that work with graphics use Vuo Coordinates:

Revised November 24, 2021

https://simple.wikipedia.org/wiki/Cartesian_coordinate_system

5 How nodes can be used as building blocks Page 70 of 162

screen
with 4:3 aspect ratio

(1,0,0)

x increases
left to right

(-1,0,0)

y increases
bottom to top

(0,0.75,0)

(0,-0.75,0)

varies with aspect ratio

varies with aspect ratio

z increases
back to front

center
(0,0,0)

Typically, as illustrated above, the position (0,0) for 2D graphics or (0,0,0) for 3D graphics is at the

center of the rendering area. The X-coordinate -1 is along the left edge of the rendering area, and

the X-coordinate 1 is along the right edge. The rendering area’s height depends on the aspect ratio

of the graphics being rendered, with the Y-coordinate increasing from bottom to top. In 3D graphics,

the Z-coordinate increases from back to front.

When working with 3D graphics, you can change the center and bounds of the rendering area by using

a Make Perspective Camera or Make Orthogonal Camera node. For example, you can use a camera to

zoom out, so that the rendering area shows a larger range of X- and Y-coordinates.

5.5.2 Sound/audio

The vuo.audio node set lets you work with audio input and output. You can use audio input to create

music visualizations or control a composition with sound. You can use audio output to synthesize

sounds. Together, audio input and output can be used to receive a live audio feed, process the audio,

and play it aloud.

5.5.3 User input devices

There are many built-in nodes you can use to make your compositions interactive, including:

Revised November 24, 2021

5 How nodes can be used as building blocks Page 71 of 162

• vuo.mouse for getting input from a mouse or trackpad

• vuo.keyboard for getting input from keys typed or pressed

• vuo.hid for getting input from a USB Human Interface Device (HID)

• vuo.leap for controlling a composition with hand and finger movements from a Leap Motion

device

• vuo.osc for remotely controlling a composition via a TouchOSC interface on a phone or tablet

• the Filter Skeleton node for getting input from Delicode NI mate 2

5.5.4 Music and stage equipment

Your compositions can control and be controlled by music and stage equipment — such as keyboards,

synthesizers, sequencers, and lighting — using several common protocols:

• vuo.osc for receiving OSC messages

• vuo.midi for sending and receiving MIDI events

• vuo.artnet (pro) for sending and receiving Art-Net messages

The vuo.bcf2000 nodes interface with the Behringer BCF2000 MIDI controller.

5.5.5 Applications

Applications that send or receive messages via the OSC, MIDI, or Art-Net protocol can communicate

with your composition if you use the vuo.osc, vuo.midi, or vuo.artnet nodes.

Your composition can send video to and receive video from other applications via Syphon using the

vuo.syphon node set.

With the vuo.app node set, your composition can launch other apps and open documents in them.

5.5.6 Sensors, LEDs, and motors

The vuo.serial nodes allow your composition to connect to serial devices, including programmable

microcontrollers like Arduino. Via the Arduino, your composition can receive data from sensors, and

send data to control LEDs and motors.

Revised November 24, 2021

5 How nodes can be used as building blocks Page 72 of 162

5.5.7 Displays

Two node sets let you fine-tune how a composition’s windows are displayed on the available screens.

The vuo.screen node set provides information about the available screens. The vuo.window node

set controls how each window is displayed, including its aspect ratio and whether it’s fullscreen.

5.5.8 Files

Your composition can open files on your computer’s filesystem or download them from the internet

using “fetch” nodes, such as Fetch Image, Fetch Data, and Fetch XML Tree.

Your composition can save files to your computer’s filesystem using “save” nodes, such as Save Image,

Save Data, and Save Images to Movie.

For opening, manipulating, and saving XML and JSON files, there’s the vuo.tree node set. And for

CSV and TSV files, there’s the vuo.table node set.

The vuo.file nodes enable your composition to interact with your computer’s filesystem.

5.5.9 Internet

With the vuo.rss nodes, your composition can download RSS feeds.

To retrieve data from an XML or JSON web service, you can use the vuo.tree nodes.

5.6 Adding nodes to the canvas by dropping files

For many types of files, dragging and dropping the file onto the canvas will create a node with that

file as input. (If more than one node matches the file type, you’ll be presented with a menu to choose

which node.)

Type of file Node created

image Fetch Image

audio Play Audio File

video Play Movie or Decode Movie Image

3D model Fetch Scene

projection mesh Warp Image with Projection Mesh

plain text Fetch Data

Revised November 24, 2021

5 How nodes can be used as building blocks Page 73 of 162

Type of file Node created

JSON Fetch JSON Tree

XML Fetch XML Tree

CSV or TSV Fetch Table

RSS or RDF Fetch RSS Items

ICC profile Fetch Data

application Launch App

folder List Files

By default, the node’s URL input port value will be filled in with the file’s relative path. To get an

absolute path instead, hold down the option key when dropping the file onto the canvas.

5.7 Creating a node

You can expand the things that Vuo can do by adding nodes to your Node Library. There are several

ways to create your own nodes:

• By turning a group of nodes and cables into a single node. See Using subcompositions inside

of other compositions.

• By writing GLSL code within Vuo. See Turning graphics shaders into nodes.

• By writing C/C++/Objective-C code in a text editor or IDE. See Developing node classes and

types for Vuo.

5.8 Installing a node

You can download nodes created by other people and add them to your Node Library. These include

nodes found in the Node Gallery, subcompositions found in the Composition Gallery, and fragment

shaders in Interactive Shader Format (ISF).

5.8.1 Installing a node the quick way

You no longer have to relaunch Vuo
after installing nodes.

Changed in Vuo 2.0

If the node to install is a .vuonode file, you can just double-click on the file to install it. The node

gets installed in the User Library folder (explained in the next section). You can begin using the node

right away, without having to relaunch Vuo.

Revised November 24, 2021

https://api.vuo.org/2.4.0/group___developing_node_classes_types.html
https://api.vuo.org/2.4.0/group___developing_node_classes_types.html
https://vuo.org/nodes
https://vuo.org/composition
https://www.interactiveshaderformat.com/

5 How nodes can be used as building blocks Page 74 of 162

5.8.2 Making a node available to all compositions

Depending on who should have access to the node — which compositions, and which user accounts

on the computer — there are different places to install the node.

System Library
All users on the computer have access to these nodes.
/Library/Application Support/Vuo/Modules

User Library
Only you have access to these nodes.
/Users/<you>/Library/Application Support/Vuo/Modules

Composition-Local Libraries
Only compositions in each folder have access to these nodes.
/Users/<you>/Desktop/<some composition folder>/Modules

/Users/<you>/Documents/Vuo/<another composition folder>/Modules

…

If the node is one that you expect to use in many compositions, you can install it in the User Library

folder or the System Library folder. To access these folders, go to:

• Werkzeuge Öffnen die Benutzerbibliothek im Finder

– Or in Finder: Hold down the Option key and select the Los Bibliothek menu option.

From there, go to Library Application Support Vuo Modules.

• Werkzeuge Öffnen den Ordner Systembibliothek

– Or in Finder: In the top-level folder on your hard drive, go to Library Application
Support Vuo Modules.

You’ll typically want to choose the User Library folder, since yours will be the only user account on your

computer that needs access to the node. Use the System Library folder only if you have administrative

access and you want all users on the computer to have access to the node.

To install the node, just place the node file in the User Library or System Library folder. If Vuo is

running, it will automatically detect the file, and the node will appear in the Node Library momentarily.

Otherwise, the node will appear in the Node Library the next time you launch Vuo.

Revised November 24, 2021

5 How nodes can be used as building blocks Page 75 of 162

5.8.3 Making a node available to one or a few compositions

New in Vuo 2.0While some nodes are generally useful, others are more specialized. They may only make sense within

the context of a certain composition. Thus, you may not want them to appear in your Node Library

when you’re working on unrelated compositions.

You can make a node available only to selected compositions by installing it in a Composition-Local

Library. For example, let’s say you have a composition called Reptiles.vuo saved to your Desktop.

You have a subcomposition called me.crocodile.vuo and a node called me.tortoise.vuonode
that you need only for Reptiles.vuo. You can create a folder called Modules on your Desktop

and place me.crocodile.vuo and me.tortoise.vuonode in that folder.

A Composition-Local Library is a folder called Modules located in the same folder as a composition.

When you have that composition open, the nodes in the Composition-Local Library appear in the Node

Library.

If there’s more than one composition in the same folder as Modules, all of those compositions can

“see” and make use of the nodes in that Composition-Local Library.

A subcomposition within a Composition-Local Library may contain other nodes that are installed in

the same Composition-Local Library. It may also contain nodes that are installed in the User Library

or System Library folder.

If you install a subcomposition in a Composition-Local Library and later decide that you want to

make the node available to all compositions, you can open the subcomposition and go to Ablage

In Benutzerbibliothek verschieben .

5.8.4 Uninstalling a node

To uninstall a node, delete or move the node file out of the Library folder in which it’s installed.

To find out where the node is installed, right-click on it in the Node Library and go to

Im Finder anzeigen .

Be aware that once you’ve uninstalled a node, compositions that contain the node will no longer work.

Revised November 24, 2021

6 Using subcompositions inside of other compositions Page 76 of 162

6 Using subcompositions inside of other composi-

tions

If you find yourself copying and pasting the same group of nodes and cables into many compositions,

you may want to turn those nodes and cables into a subcomposition. A subcomposition is a composi-

tion that can be used as a node inside of other compositions. A subcomposition saves you the effort

of having to recreate the same nodes and cables over and over. They’re packaged neatly inside a node,

which you can drag from the Node Library onto your canvas just like any other node.

Let’s walk through an example. Suppose you often draw hemispheres (half spheres) in your 3D com-

positions, and it would be convenient to have aMake Hemisphere node in your Node Library. The first

step is to identify the nodes and cables that you want to package into a subcomposition.

The composition above renders two rotating hemispheres to a window. (The Trim 3D Object node cuts

off half of the sphere. The Show Back of 3D Object node makes the inside of the sphere visible.)

In other compositions, you may want to create any number of hemispheres. The hemispheres could

have different rotations, positions, sizes, and colors. They could be rendered to a window or an image.

So, for the subcomposition, let’s choose a piece of the composition that’s flexible enough to be used

in all of these scenarios: the nodes and cables tinted magenta.

New in Vuo 2.0
To turn these nodes and cables into a subcomposition, select them, then right-click on them and go

to Paket als Unterbau .

Revised November 24, 2021

6 Using subcompositions inside of other compositions Page 77 of 162

This extracts the selected part of the composition into a new window, where you’re asked to pick a

name for the subcomposition.

Having named the subcomposition, you now have two windows: one with the subcomposition and one

with the original composition, in which the selected part has been replaced with a subcomposition

node.

Revised November 24, 2021

6 Using subcompositions inside of other compositions Page 78 of 162

In the original composition, the nodes and cables outside of the selected part (which was packaged

into a subcomposition) connected to the selected part at three points of contact:

• the Transform input port of Transform 3D Object,

• the Material input port of Make Sphere, and

• the Transformed Object output port of Transform 3D Object.

When the selected part was packaged into a subcomposition, these three points of contact became

published input and output ports within theMake Hemisphere subcomposition. Correspondingly, they

became input and output ports on the Make Hemisphere node.

Now that you have a Make Hemisphere node available, you can search for it in the Node Library and

add more instances of it to your composition.

Revised November 24, 2021

6 Using subcompositions inside of other compositions Page 79 of 162

6.1 Making a subcomposition available to other compositions

Paket als Unterbau installs the subcomposition in a Composition-Local Library. This makes

the subcomposition appear in the Node Library only when the composition it came from (or

another composition in the same folder) is open. If you want the subcomposition to appear in

the Node Library for all compositions, click on the subcomposition window and go to Ablage

In Benutzerbibliothek verschieben .

For an explanation of Composition-Local and User Library folders, see Installing a node.

6.2 Reasons to use subcompositions

TheMake Hemisphere subcomposition illustrated one motivation for using subcompositions: to avoid

recreating the same composition pieces over and over again. A subcomposition enables you to assem-

ble a composition piece once and reuse it many times. If you notice a problemwith the subcomposition

or want to improve it, you only have to make the change in one place to have it apply everywhere the

subcomposition is used.

Another reason you may want to use subcompositions is to better organize large compositions to make

them more readable. You can replace a complex network of nodes and cables with a subcomposition

that has a descriptive title and a clearly defined set of inputs and outputs.

A third reason for using subcompositions is to share your work with others in a modular format. When

you create a composition piece that other people might like to use inside of their compositions, you

can package it as a subcomposition that others can install in their Node Libraries.

6.3 Creating a subcomposition

In the example above, we created theMake Hemisphere subcomposition by selecting nodes and cables

within a composition, right-clicking on them, and going to Paket als Unterbau . This installed the

subcomposition in a Composition-Local Library.

If you want to create an empty subcomposition in a Composition-Local Library, you can right-click on

New in Vuo 2.0the canvas and go to Unterbau einfügen .

If instead you want to create a subcomposition in the User Library folder, you can open a new or

existing composition and go to Ablage In Benutzerbibliothek speichern .

Revised November 24, 2021

6 Using subcompositions inside of other compositions Page 80 of 162

6.3.1 Naming a subcomposition

When you turn an already-saved composition into a node, the node’s title derives from the composi-

tion’s file name. A composition file called Scribble.vuo or scribble.vuo would be turned into a

node titled Scribble. A composition file called Solve Anagram.vuo or SolveAnagram.vuo would

be turned into a node titled Solve Anagram.

If you haven’t yet saved the composition file, Vuo prompts you to enter a node title.

The node’s class name is your vuo.org account name followed by a period followed by a lower-

camel-case version of the node title — for example, me.scribble or me.solveAnagram. In

the Ablage In Benutzerbibliothek speichern dialog, you can customize the prefix — for example,

you could group your subcompositions into categories such as me.interaction.scribble or

me.algorithm.solveAnagram.

After turning a subcomposition into a node, if you want to change the node’s title, open the subcom-

New in Vuo 2.0position and go to Bearbeiten Informationen zur Aufbau… .

If you want to change the node’s class name, rename the installed subcomposition file. Do

this by right-clicking on the subcomposition node in the Node Library and choosing the menu

item Im Finder anzeigen , finding your installed subcomposition in that folder (for example,

me.scribble.vuo), and renaming the file. Be careful renaming a subcomposition, because any

compositions that refer to the subcomposition by its old name will have an error until you substitute

in the new version of the subcomposition.

6.4 Editing a subcomposition

Make Hemisphere
me.makeHemisphere

≡ Transform
Material

subcomposition icon

A subcomposition node has an icon in its top-right corner, indicating that there’s a composition inside

that you can edit. You can open that composition by double-clicking on the subcomposition node on

the canvas, or by right-clicking on the subcomposition node on the canvas or in the Node Library and

choosing Edit Composition… .

When you save changes made to the subcomposition, the changes apply everywhere the subcomposi-

tion is used. If the subcomposition is installed in the User Library or System Library folder, this means

every instance of the subcomposition node in every composition that uses it.

Revised November 24, 2021

6 Using subcompositions inside of other compositions Page 81 of 162

If the subcomposition is installed in a Composition-Local Library, changes likewise affect every in-

stance of the subcomposition node in every composition that uses it. However, the compositions

are limited to those in the same folder as the Composition-Local Library. It’s possible to have dif-

ferent variants of a subcomposition (same node class name, different contents) installed in multiple

Composition-Local Libraries — in which case, changes to one variant of the subcomposition don’t

affect compositions that use a different variant.

6.5 Watching events and data inside a subcomposition

New in Vuo 2.0When you open a subcomposition via a node on the canvas — by double-clicking on the node or

by right-clicking and choosing Edit Composition… — you can monitor the data and events flowing

through the subcomposition just as you would in a regular composition — by opening port popovers

and enabling Show Events.

For example, in the composition below, if you double-clicked on the magenta (upper) Make Hemi-

sphere node to open the subcomposition, then opened a port popover within the subcomposition,

you’d see the events and data that are flowing through the magenta instance of the subcomposition.

If instead you wanted to see the events and data that are flowing through the tangerine (lower) in-

stance of Make Hemisphere, you would double-click on that node.

Be aware that if you open a subcomposition via the Node Library, even if a composition that contains

the subcomposition is running, you won’t see any data or events flowing through the subcomposition.

You need to open it via a node on the canvas instead.

Revised November 24, 2021

6 Using subcompositions inside of other compositions Page 82 of 162

6.6 How events travel through a subcomposition

6.6.1 Events into a subcomposition

An event now only enters a subcom-
position through the published in-
put ports that it hit, not all pub-
lished input ports.

Changed in Vuo 2.0

When an event hits an input port of a subcomposition node, it travels into the subcomposition through

the corresponding published input port.

When an event hits multiple input ports of the subcomposition node, it travels in through all of the

corresponding published input ports simultaneously.

To illustrate, here’s a composition that uses a subcomposition node called Connect Recent Points to

draw a series of connected line segments behind the mouse cursor as it moves. Below that is the

Connect Recent Points subcomposition.

Revised November 24, 2021

6 Using subcompositions inside of other compositions Page 83 of 162

When an event hits the Add Point input port of the Connect Recent Points node (in the first composition

above), it travels into the subcomposition (second composition above) through the AddPoint published

input port. The event hits the Enqueue node and travels onward through the subcomposition.

You might be wondering about theMax Recent Points input port, which has no incoming events. We’ll

talk more about ports with constant values in a moment, but for now just know that the constant

data does enter the subcomposition through theMaxRecentPoints published input port and reach the

Enqueue node.

Here’s a modification of the first composition above that allows the user to toggle between a short

tail and a long tail by pressing any key.

Now events come in through the MaxRecentPoints published input port whenever the user presses a

key and the AddPoint published input port whenever the user moves the mouse.

6.6.2 Events out of a subcomposition

An event now only exits a subcom-
position through the published out-
put ports that it hit, not all pub-
lished output ports.

Changed in Vuo 2.0

If an event reaches a published output port of a subcomposition, it travels out of the corresponding

output port of the subcomposition node.

If an event into a subcomposition node reaches multiple published output ports of the subcomposition,

it travels out of all of the corresponding output ports of the subcomposition node simultaneously. For

example, in the subcomposition below, even though the Calculate nodes can execute concurrently and

may not output their values at exactly the same time, the Convert Cartesian To Polar subcomposition

node always outputs the event from its R and Theta ports simultaneously.

Revised November 24, 2021

6 Using subcompositions inside of other compositions Page 84 of 162

If an event that comes in through a subcomposition’s published input ports doesn’t reach any of the

subcomposition’s published output ports (because of wall or door ports within the subcomposition),

then the event doesn’t come of out any of the subcomposition node’s output ports. The subcomposition

node blocks the event.

A subcomposition can fire events, as demonstrated below. The Fire At Tempo subcomposition node is

set to fire at a rate of 120 beats per minute.

Revised November 24, 2021

6 Using subcompositions inside of other compositions Page 85 of 162

Events from triggers within a sub-
composition don’t exit the subcom-
position if they overlap with events
from published input ports.

Changed in Vuo 2.0

If events fired from within the subcomposition can overlap with events from the published input ports,

only the events from the published input ports will exit through the published output ports. The

subcomposition node will transmit events but not fire events.

The subcomposition above, me.fireAtTempo, does fire events from its published output port. That’s

because there’s no overlap between the events coming in through the BeatsPerMinute published input

port (which are blocked at the Fire Periodically node’s input port) and the events fired from the Fire

Periodically node’s output port.

The subcomposition below does not fire events from its published output port. That’s because the

event fired from the Fire on Start node travels along the same path as the events coming in from

the published input port (nodes tinted magenta). The event fired from Fire on Start travels within

the subcomposition but is blocked from exiting the subcomposition. Meanwhile, events that come in

through the published input port do exit through the published output port.

Revised November 24, 2021

6 Using subcompositions inside of other compositions Page 86 of 162

6.6.3 Constant input port values

If an input port on a subcomposition node has a constant value with no cables going into it, the

constant value travels into the subcomposition through the corresponding published input port when

the composition starts and whenever you edit the constant value.

The data travels from the published input port to any input ports that are directly connected to it by a

cable. This is a rare case in which data can travel without an event. The data reaches the input ports

on nodes but does not cause the nodes to execute.

In the example below, the Generate Checkerboard Image subcomposition’s width and height input

ports are set to the constant values 1920 and 1080. The subcomposition outputs a 1920x1080 image.

Revised November 24, 2021

6 Using subcompositions inside of other compositions Page 87 of 162

It’s important to realize that the data travels only through the cable from the published input port to

the next node, no farther. With the below variation on Generate Checkerboard Image, the subcompo-

sition no longer outputs an image of size specified by width and height. Why? Because the constant

values 1920 and 1080 only flow as far as theMultiply node’s input ports. They don’t cause theMultiply

node to execute and pass its data along to the Make Checkerboard Image node.

To fix the composition above, you could add an event cable from the time published input port to

each of the Multiply nodes. This would ensure that the Multiply nodes provide the halved width and

height to Make Checkerboard Image whenever Make Checkerboard Image needs them, even if width

and height have constant values.

Revised November 24, 2021

6 Using subcompositions inside of other compositions Page 88 of 162

As long as the published input port connects directly to the node’s input port, you can use a constant

value to control a node that fires events. In the example below, editing the subcomposition node’s

Seconds input port would affect the firing rate of the Fire Periodically node inside of it.

Revised November 24, 2021

7 Making compositions fit a mold with protocols Page 89 of 162

7 Making compositions fit a mold with protocols

You may have noticed that a lot of Vuo’s nodes fall into groups where the nodes in the group are,

in some sense, interchangeable. For example, what are some nodes that can fill in the blank in the

composition below?

Allow	First	Event
vuo.event.allowFirst

Event
Reset

Fetch	Image
vuo.image.fetch

image.png URL

Fire	on	Display	Refresh
vuo.event.fireOnDisplayRefresh

Refreshed	at	Time

Render	Image	to	Window
vuo.image.render.window2

Image
Set	Window	Description

Updated	Window

There are numerous possibilities: Adjust Image Colors, Outline Image, Make Cartoon Image, and Re-

duce Haze, just to name a few. Any node that inputs an image and outputs a modified version of that

image will fit.

Allow	First	Event
vuo.event.allowFirst

Event
Reset

Fetch	Image
vuo.image.fetch

image.png URL

Fire	on	Display	Refresh
vuo.event.fireOnDisplayRefresh

Refreshed	at	Time

Outline	Image
vuo.image.outline

Image
RGB Channels

2 Radius
1 Intensity
0 Threshold

Bipolar Range
Render	Image	to	Window
vuo.image.render.window2

Image
Set	Window	Description

Updated	Window

The idea of a protocol is to give a name to the kinds of nodes or compositions that can fill in a blank.

A protocol defines a list of input and output ports, with certain names and data types.

Protocols are something you need to know about when exporting a composition as a movie, screen

saver, or plugin (Exporting compositions) or using a composition in a VJ application.

You can find compositions exemplifying each protocol under Ablage Öffnen Beispiel Bildgenerator ,
Bildfilter , and Bildübergang .

7.1 Image Filter protocol

The Image Filter protocol is for compositions that alter an image (or stream of images). For example,

an Image Filter could add a special distortion effect to a video clip.

7.1.1 Published input ports

Revised November 24, 2021

7 Making compositions fit a mold with protocols Page 90 of 162

Name Data type Required? Description

image Image Required The original image.

time Real Required A number that changes over time, used to

control animations or other changing

effects.

duration Real Optional For FxPlug: The length, in seconds, of the

clip.

framerate Real Optional For FxPlug: The framerate of the project,

in frames per second.

frameNumber Integer Optional For FxPlug: The number of frames since

the beginning of the clip, starting at 0.

quality Real Optional For FxPlug: The rendering quality or level

of detail.

time and quality are further explained later in this section.

7.1.2 Published output ports

Name Data type Description

outputImage Image The altered image.

7.2 Image Generator protocol

The Image Generator protocol is for compositions that create an image (or stream of images). For

example, an Image Generator could create a special animation for the opening sequence of a video.

7.2.1 Published input ports

Name Data type Required? Description

width Integer Required The requested width of the image, in

pixels.

height Integer Required The requested height of the image, in

pixels.

time Real Required A number that changes over time, used to

control animations or other changing

effects.

Revised November 24, 2021

7 Making compositions fit a mold with protocols Page 91 of 162

Name Data type Required? Description

offlineRender Boolean Optional For movie export: true if the composition

is being exported to a movie and false

otherwise.

motionBlur Integer Optional For movie export: The number of frames

rendered per output frame. 1 means

motion blur is disabled; 2, 4, 8, 16, 32, or

64 means motion blur is enabled.

duration Real Optional For movie export and FxPlug: The length,

in seconds, of the movie/clip.

framerate Real Optional For movie export and FxPlug: The

framerate of the movie/project, in frames

per second.

frameNumber Integer Optional For movie export and FxPlug: The

number of frames since the beginning of

the movie/clip, starting at 0.

quality Real Optional For FxPlug: The rendering quality or level

of detail.

screen Screen Optional For screen savers: Which display the

screen saver is running on. (macOS runs a

separate instance of the composition on

each display.)

preview Boolean Optional For screen savers: true when the screen

saver is running in the System

Preferences preview thumbnail.

time and quality are further explained later in this section.

7.2.2 Published output ports

Name Data type Description

outputImage Image The created image. Its width and height should

match the width and height published input ports.

Revised November 24, 2021

7 Making compositions fit a mold with protocols Page 92 of 162

7.3 Image Transition protocol

New in Vuo 2.0The Image Transition protocol is for compositions that transition from one image (or stream of images)

to another. For example, an Image Transition could crossfade from one scene in a movie to the next

scene.

7.3.1 Published input ports

Name Data type Required? Description

startImage Image Required The image to transition from.

endImage Image Required The image to transition to.

progress Real Required A number from 0 to 1 for how far the

transition has progressed. At 0, the

transition is at the beginning, with only

startImage showing. At 0.5, the transition

is halfway through. At 1, the transition is

complete, with only endImage showing.

When previewing the composition in Vuo,

the mouse position left to right controls

progress.

time Real Required A number that changes over time, used to

control animations or other changing

effects. time is independent of progress.

duration Real Optional For FxPlug: The length, in seconds, of the

transition.

framerate Real Optional For FxPlug: The framerate of the project,

in frames per second.

frameNumber Integer Optional For FxPlug: The number of frames since

the beginning of the transition, starting

at 0.

quality Real Optional For FxPlug: The rendering quality or level

of detail.

time and quality are further explained later in this section.

7.3.2 Published output ports

Revised November 24, 2021

7 Making compositions fit a mold with protocols Page 93 of 162

Name Data type Description

outputImage Image The resulting image.

7.4 Time

The time published input port, which appears in multiple protocols, has a slightly different meaning

depending on the context.

• In most situations, including when previewing a protocol-compliant composition in Vuo, time

is the number of seconds since the composition started running.

• When exporting a movie, time is the number of seconds from the start of the movie to the

beginning of the current frame.

• In an exported FxPlug plugin, time is the number of seconds since the start of the clip (for

generators and effects) or transition.

7.5 Quality

Another published input port common to multiple protocols is quality. In exported FxPlug plugins,

this port’s value is the requested rendering quality or level of detail, from 0 (low quality / faster

performance) to 1 (high quality / slower performance).

In Final Cut Pro X, quality is always 0.5.

In Motion, the Render Normal and Draft settings correspond to value 0.5. The Render Best set-

ting corresponds to value 1.0. More information about render quality is in the Motion documentation.

7.6 Creating a protocol composition
Added the Export submenu.

Changed in Vuo 2.0

To create a composition that conforms to a protocol, choose one of the options under Ablage

Neuer Aufbau aus Vorlage Protokoll or Export . If you plan to export the composition (to create

a movie or screen saver, for example), then your best option is to pick from the Export submenu.

These menu items automatically add the optional protocol published ports relevant to the chosen

export type.

If you’ve already started working on a composition and want to make it conform to a protocol, go to

Bearbeiten Protokolle and choose a protocol.

Revised November 24, 2021

https://support.apple.com/guide/motion/custom-canvas-view-options-motnad41607e/mac#motn6638ab1d

7 Making compositions fit a mold with protocols Page 94 of 162

7.7 Editing a protocol composition

If you didn’t get the optional protocol published ports automatically by choosing a menu item under

Ablage Neuer Aufbau aus Vorlage Export , you can still add them later. You add them in the same

way that you would add a non-protocol published port. Be sure to set the published port’s name and

data type exactly as they appear in this manual. Names are case-sensitive.

7.8 Running a protocol composition

When you run an Image Generator, Image Filter, or Image Transition composition with the Run button,

Vuo feeds data and events into the published input ports and displays the published output image in a

window. This makes it easy to preview how the composition will look when run inside of an exported

product or another application.

You can change the images the Vuo feeds into protocol published input ports. For an Image Filter

composition, drop an image file onto the running composition’s window to change the image being

filtered. For an Image Transition composition, drop an image file onto the left or right half of the

window to change the start or end image, respectively.

7.9 How events travel through a protocol composition

You no longer need to block unnec-
essary published input events with
Allow Changes nodes.

Changed in Vuo 2.0

Whether you’re running a protocol-compliant composition while exporting amovie, within an exported

product such as a screensaver, or inside of another application, the same basic rules apply for how

data and events enter through the published input ports:

• A data-and-event published input port transmits its data and event whenever the data changes.

– The first event enters through every published input port.

– Subsequent events enter only through published input ports whose data has changed,

generally speaking.

– However, there are some exceptions. Depending on which data type the port has and

who is running the composition (for example, Vuo or another application), the published

input port may transmit every event.

• An event-only published input port never transmits an event.

• The next event comes in through the published input ports only after the composition has

finished processing the current event and any events spun off from it.

– Events spun off are those output by Spin Off Event, Spin Off Events, Spin Off Value, Build

List, and Process List.

Revised November 24, 2021

7 Making compositions fit a mold with protocols Page 95 of 162

– The composition has finished processing an event when the event either has reached the

published output ports or has been blocked within the composition.

You no longer need to ensure that
exactly one event reaches the pub-
lished output ports for each event
from the published input ports.

Changed in Vuo 2.0

Image Generator, Image Filter, and Image Transition compositions are typically expected to do their

jobs at a steady rate — receiving events and providing output images at evenly spaced time intervals.

Triggers within a composition may fire additional events, but those events don’t affect the host (movie

exporter, exported product, or other application) running the composition. The composition continues

to provide output images at the same rate that it receives events.

Revised November 24, 2021

8 Exporting compositions Page 96 of 162

8 Exporting compositions

You may want to export a Vuo composition…

• to create a finished product, such as a video, image, or app,

• to create a plugin for another application, such as video editing or VJ software,

• to share your work with people who don’t have Vuo installed.

This section covers the many ways that you can export a Vuo composition to another format.

8.1 Exporting an image

If you want to capture an image of a composition, you can either take a screenshot (open the Preview

app and go to Ablage Take Screenshot) or use the Save Image node (see the node’s description for

details).

8.2 Exporting a movie

Vuo offers several ways to create a movie from a composition:

• For an easy way to record the graphics displayed in a window, in the composition’s menu go to

Ablage Start Recording .

• For the highest-quality rendering, make your composition use the Image Generator protocol,

and in Vuo go to Ablage Export Film… .

• To control the movie export from within your composition, use the Save Images to Movie node

or the Save Frames to Movie node. (See each node’s description for details.)

• To control the movie export from the command line, use the vuo-export command-line tool.

(See Exporting a composition on the command line for details.)

Revised November 24, 2021

8 Exporting compositions Page 97 of 162

8.2.1 Recording the graphics in a window

To record a movie:

• Run a composition that shows at least one window.

• If your composition has more than one window, click on the one you want to record to make it

the active (frontmost) window.

• Go to Ablage Start Recording . This immediately starts recording the movie.

• Let the composition run for as long as you want to record the movie. You can interact with the

composition while it’s recording.

• Go to Ablage Stop Recording… . This immediately stops recording the movie and presents a

save dialog.

• In the save dialog, choose the file where you want to save your movie.

When you start recording, the graphics showing in the window at that moment are added as a frame in

the movie. After that, each time the window being recorded renders some graphics — in other words,

each time the Render Image to Window, Render Layers to Window, or Render Scene to Window node

receives an event — a frame is added to the movie. If your composition is rendering about 60 frames

per second, then your movie will play back at about 60 frames per second. If your composition renders

once, then waits 10 seconds, then renders again, your movie will do the same — show the first frame

for 10 seconds, then show the second frame.

The dimensions of the rendered movie match the dimensions of the window’s graphics area at the

moment when you start recording. If you resize the window while the recording is in progress, then

the recorded images will be scaled to the movie’s dimensions.

If your composition has multiple windows, then the active (frontmost) window at the time when you

went to Ablage Start Recording will be the one recorded. Only the content displayed within the

window’s graphics area — not the window’s title bar, not the cursor, and not any audio — will be

recorded in the movie.

Although recording from a composition window is an easy way to create a movie, and allows you to

interact with the composition while the recording is being made, it does limit the quality of the movie.

Recording a movie in real time means that your computer has to do extra processing, beyond just run-

ning the composition. Depending on how powerful your computer is, this may slow the composition

down or make it render choppily, and do the same to the recorded movie.

The most reliable way to avoid slowness or choppiness is to export a movie from an Image Generator

composition, as described in the next section. But if you do want to record from a composition window,

here are some ways to improve the quality of your recording:

• Avoid doing other processor-intensive things on your computer (such as running other compo-

sitions) while the recording is in progress.

• Limit the size of the window that you record. (Larger windows require more processing power.)

• Avoid resizing the window during a recording. (Scaling the movie frames after the window has

been resized requires more processing power.)

Revised November 24, 2021

8 Exporting compositions Page 98 of 162

8.2.2 Exporting a movie from an Image Generator composition

Another way to create a movie from a composition is with Ablage Export Film… . Instead of record-

ing a composition in real time, this option runs the composition invisibly and takes as long (or short)

as needed to render each movie frame. The resulting movie has a precise frame rate and no dropped

frames. You can choose the start and end time, frame rate, and dimensions. Optionally, you can add

antialiasing and motion blur (if you have Vuo Pro).

To export a movie:

• Go to Ablage Neuer Aufbau aus Vorlage Export Film . This creates a composition that

conforms to the Image Generator protocol.

• Add nodes to the composition to make it output a stream of images.

• Go to Ablage Export Film… .

• In the dialog that appears, choose the movie file to output to and the other settings for your

movie.

• Click the Export button.

8.3 Exporting a screen saver

New in Vuo 2.0You can turn your Vuo compositions into screen savers that will run on macOS Sierra (10.12) and later.

• In Vuo, go to Ablage Neuer Aufbau aus Vorlage Export Bildschirmschoner . This creates a

composition that conforms to the Image Generator protocol.

• Add nodes to the composition to make it output a stream of images.

• Go to Ablage Export Mac-Bildschirmschoner .

• When the export is complete, relaunch System Preferences.

• In System Preferences, go to Schreibtisch & Bildschirmschoner Bildschirmschoner and find

your screen saver.

8.3.1 Sharing screen savers

You can share the screen savers you’ve created in Vuo with other people, even if they don’t have Vuo.

To find a screen saver that you’ve exported:

• In Finder, hold down ⌥ and go to Los Bibliothek .

• In that folder, navigate to Screen Savers.
• Locate the screen saver (a .saver file).

Revised November 24, 2021

8 Exporting compositions Page 99 of 162

When you send the screen saver to someone else, here’s how they can install it:

• Right-click on the .saver file and choose Open.

• In the dialog that warns that the file is from an unidentified developer, click Open.

• In the dialog that asks if you want to install the screen saver, click Install.

Alternatively, the person installing the screen saver can navigate to the Screen Savers folder as

above and drop the .saver file in there.

8.4 Exporting an FxPlug plugin

New in Vuo 2.0You can turn your Vuo compositions into custom effects, transitions, and generators for Final Cut Pro

X and Motion.

Vuo now exports FxPlug version
4 plugins. These plugins work
on both X86-64 and Apple Silicon
(M1/ARM64), and require Motion or
Final Cut Pro version 10.5 or later.

Changed in Vuo 2.4
8.4.1 Video effects

• In Vuo, go to Ablage Neuer Aufbau aus Vorlage Export FxPlug Bewirken . This creates

a composition that conforms to the Image Filter protocol.

• Add nodes to the composition to make it alter the input image and output the result.

• Go to Ablage Export FxPlug .

• When the export is complete, relaunch Final Cut Pro.

• In Final Cut Pro, find the plugin in the Effects Browser under Video Vuo .

8.4.2 Transitions

• In Vuo, go to Ablage Neuer Aufbau aus Vorlage Export FxPlug Übergang . This creates

a composition that conforms to the Image Transition protocol.

• Add nodes to the composition to make it combine the input images and output the result.

• Go to Ablage Export FxPlug .

• When the export is complete, relaunch Final Cut Pro.

• In Final Cut Pro, find the plugin in the Transitions Browser under Vuo .

8.4.3 Generators

• In Vuo, go to Ablage Neuer Aufbau aus Vorlage Export FxPlug Generator . This creates

a composition that conforms to the Image Generator protocol.

• Add nodes to the composition to make it output a stream of images.

• Go to Ablage Export FxPlug .

• When the export is complete, relaunch Final Cut Pro.

• In Final Cut Pro, find the plugin in the Titles and Generators sidebar under Vuo .

Revised November 24, 2021

8 Exporting compositions Page 100 of 162

8.4.4 Category and name

By default, plugins exported from Vuo are installed in Final Cut Pro under the Vuo category. To choose

a different category, before exporting go to Bearbeiten Informationen zur Aufbau… , click on the Ex-

porting tab, and enter an FxPlug Group.

In Bearbeiten Informationen zur Aufbau… , under the General tab, you can change the name of the

plugin displayed in Final Cut Pro.

8.4.5 Parameters

When creating a composition to be exported as an FxPlug, the composition will have the published

ports required by the protocol. It may also include some of the optional published ports for FxPlug

listed in Making compositions fit a mold with protocols.

You can add non-protocol published input ports as well. These appear in the Inspector panel in Final

Cut Pro.

Non-protocol published input ports with the following data types are controllable in Final Cut Pro or

Motion:

Data type Notes

Real

2D Point

3D Point

4D Point

Integer

Boolean

Text

Color

Image Available in Motion but not Final Cut Pro

Option types Data values edited in Vuo using menus

Published input ports that have menu input editors in Vuo may behave the same or differently in Final

Cut Pro, depending on the port’s data type. You can check the port’s data type by clicking on the port

to open its popover. If the data type is something other than Integer — for example, the Blend Mode

type of the Blend Images node’s Blend Mode port — then Final Cut Pro will present a menu. If the

data type is Integer, then Final Cut Pro will present a slider to select by number, with 0 corresponding

to the first menu item.

Revised November 24, 2021

8 Exporting compositions Page 101 of 162

You can adjust the default, minimum, and maximum values for a parameter in Final Cut Pro by editing

the published input port in Vuo. Right-click on the published input port and select Wert bearbeiten ...

to change the default value or Details bearbeiten… to change the minimum and maximum.

8.4.6 Image scaling

When Final Cut Pro provides images to your composition via the Image Filter’s image input port, or

the Image Transition’s startImage and endImage input ports, Vuo assigns the image a Scale Factor

based on the scale of the image relative to the Motion Template. Some image filter nodes use the

Scale Factor to keep effects looking consistent between Final Cut Pro’s Better Performance and Better

Quality modes (see the vuo.image node set documentation for a list of these nodes). All image filter

nodes give their output image the same scale factor as the input image.

Vuo creates Motion Templates with resolution 5120x2700. If, for example, your Final Cut Pro project

is 1920x1080, the input image’s Scale Factor will be 0.375 (1920/5120) in Better Quality Mode, or

0.1875 (1920/5120/2) in Better Performance Mode. If you use a Blur Image node with radius 100

points, it will be scaled to 37.5 pixels in Better Quality Mode, or 18.75 pixels in Better Performance

mode, resulting in the same effective blur amount in both modes.

8.4.7 Sharing plugins

You can share FxPlug plugins you’ve created in Vuo with other people, even if they don’t have Vuo.

There are two files associated with a plugin. To find them:

• FxPlug wrapper app

– When exporting a composition, Vuo asks you to choose where to place the wrapper app

• Motion template

– In Finder, go to Los Benutzerverzeichnis .

– In that folder, navigate to Movies > Motion Templates.
– Within the Effects, Generators, or Transitions folder, locate the file for your

plugin.

You can send these two files to someone else, who can install them in the same location on their

computer. Both files are needed for the plugin to work.

Revised November 24, 2021

8 Exporting compositions Page 102 of 162

8.4.8 Uninstalling plugins

To uninstall a plugin that was exported from Vuo:

• Quit Final Cut Pro and Motion.

• Locate the two files described in the previous section, and throw them in the Trash.

8.4.9 Maintaining compatibility between plugin versions

Each FxPlug has a unique identifier (UUID). Vuo generates this unique identifier based on your com-

position’s Bundle Identifier, which you can set in Bearbeiten Informationen zur Aufbau… , under the

Exporting tab. Final Cut Pro X uses this identifier to keep track of which plugin provides the effects

for clips on the timeline.

For example, say you release version 1.0 of a plugin, and people start using it in their Final Cut Pro X

projects. Then you want to release version 1.1 of your plugin which fixes a small issue — if the new

version has the same Bundle Identifier as version 1.0, then the updated plugin will automatically be

used throughout people’s existing Final Cut Pro X projects when they install the plugin. You can even

change the name of the plugin (Bearbeiten Informationen zur Aufbau… , under the General tab), and

it will continue to be associated with people’s existing Final Cut Pro X projects.

Then, say, you want to release version 2.0 of your plugin, which differs significantly from version

1. You don’t want the updated plugin to automatically be used in people’s existing Final Cut

Pro X projects, since the changes in 2.0 might cause unwanted appearance changes to their

projects. In this case, you should change the Bundle Identifier — for example, add a .2 suffix, as in

com.mycompany.myplugin.2 — so people will be able to continue using the old version of your

plugin in their existing projects, while also being able to use the new version of your plugin when

they pick it from Final Cut Pro X’s Effects, Transitions, or Generators browser.

8.5 Exporting an FFGL plugin

New in Vuo 2.0You can turn your Vuo compositions into FFGL (FreeFrame 1.6+) plugins that can be loaded by many

VJ apps on macOS, including Resolume Avenue, Resolume Arena, Magic Music Visuals, VDMX, and

Isadora 3.

FFGL plugins exported from Vuo can run only in 64-bit apps. Most macOS apps these days are 64-bit,

although some older VJ apps are still 32-bit. You can check your app’s documentation to see if it’s

64-bit or 32-bit.

You can create three kinds of FFGL plugins in Vuo: sources using the image generator protocol, effects

using the image filter protocol, and blend modes using the image transition protocol. To learn how to

use protocols, see Making compositions fit a mold with protocols.

After exporting an FFGL plugin, you may need to restart your VJ app for the plugin to become available.

Revised November 24, 2021

8 Exporting compositions Page 103 of 162

8.5.1 Sources

• In Vuo, go to Ablage Neuer Aufbau aus Vorlage Export FFGL Quelle . This creates a

composition that conforms to the Image Generator protocol.

• Add nodes to the composition to make it output a stream of images.

• Go to Ablage Export Mac FFGL Plugin .

8.5.2 Effects

• In Vuo, go to Ablage Neuer Aufbau aus Vorlage Export FFGL Bewirken . This creates a

composition that conforms to the Image Filter protocol.

• Add nodes to the composition to make it alter the input image and output the result.

• Go to Ablage Export Mac FFGL Plugin .

8.5.3 Blend modes

• In Vuo, go to Ablage Neuer Aufbau aus Vorlage Export FFGL Mischmodus . This creates

a composition that conforms to the Image Transition protocol.

• Add nodes to the composition to make it combine the input images and output the result.

• Go to Ablage Export Mac FFGL Plugin .

8.5.4 Name

Vuo names the plugin according to the Name field in Bearbeiten Informationen zur Aufbau… under

the General tab. Since FFGL limits plugin names to 16 characters, Vuo shortens the name if needed.

8.5.5 Parameters

In addition to the published ports required by the Image Filter or Image Generator protocol, you can

create other published input ports to appear as parameters in your VJ app.

You can use the following data types for non-protocol published input ports for FFGL plugins:

Data type Scaled range Shortened name Notes

Real 0 to 1 16 characters

2D Point (0,0) to (1,1) 14 characters

3D Point (0,0,0) to (1,1,1) 14 characters

Revised November 24, 2021

8 Exporting compositions Page 104 of 162

Data type Scaled range Shortened name Notes

4D Point (0,0,0,0) to (1,1,1,1) 14 characters

Integer 0 to 1 16 characters

Boolean 16 characters

Text 16 characters

Color 14 characters

Image 16 characters Not supported in Resolume

Since FFGL limits numeric values to the range 0 to 1, Vuo automatically scales parameter values from

that range to the range you’ve specified in your composition (by right-clicking on the published input

port, going to Details bearbeiten… , and editing Suggested Min and Suggested Max). For example, if

you have a Real published input port with Suggested Min -10 and Suggested Max 10, your VJ app will

show a slider from 0 to 1. Your composition will get an input value of -10 when the slider is at 0, -5

when the slider is at 0.25, and 10 when the slider is at 1.

Since FFGL limits parameter names to 16 characters, Vuo shortens names if needed. For 2D, 3D, and

4D Point published input ports, Vuo creates a separate parameter for each coordinate (X, Y, Z, or W) and

appends a space and the coordinate name to the parameter name. To fit in these 2 extra characters,

Vuo shortens the rest of the name to 14 characters. Similarly, for Color published input ports, Vuo

creates a separate parameter for each channel (R, G, B, or A).

8.5.6 Sharing plugins

You can share FFGL plugins you’ve created in Vuo with other people, even if they don’t have Vuo. To

find an FFGL plugin that you’ve exported:

• In Finder, hold down ⌥ and go to Los Bibliothek .

• In that folder, navigate to Graphics > FreeFrame Plug-Ins.
• Locate the plugin (a .bundle file).

You can send this file to someone else, who can install it in the same location on their computer.

8.5.7 Uninstalling plugins

To uninstall an FFGL plugin that was exported from Vuo, locate the .bundle file as described in the

previous section and throw it in the Trash.

Revised November 24, 2021

8 Exporting compositions Page 105 of 162

8.6 Exporting an application

Using the Ablage Export Mac App... menu item, you can turn your composition into an macOS

application (.app file) that will run on macOS Sierra (10.12) and later.

When exporting a composition that refers to files on your computer (such as images, scenes, or movies),

typically Vuo will know to copy those into the exported app. If you’ve added these files to your com-

position by dragging them onto the canvas (without holding down ⌥) — creating a node such as

Fetch Image or Play Movie— then the files will automatically be copied into the exported app. In fact,

Vuo will automatically copy files and folders for all relative paths found in ports named URL, URLs, or

Folder on nodes that read files.

If you’ve held down ⌥ while dragging a file onto the canvas, or if you’ve typed an absolute path into

the input editor for a URL, then Vuo won’t copy the file into the exported app. This is useful if you

want to refer to a file that you know will be in a certain location on every computer that runs the app,

such as an image that comes with the operating system.

In some cases, you may want a file to be copied into the app, but Vuo may not be able to figure this out.

This may happen, for example, if your composition uses an Append Text node to construct relative file

paths out of smaller pieces. If Vuo doesn’t copy your files into the exported app automatically, then

you can copy them yourself. For example, if your composition uses a file called image.png:

• Place image.png in the same folder as your composition (.vuo file).

• Go to Ablage Export Mac App... and create MyApp.app.
• Right-click on MyApp.app and choose Show Package Contents .

• In the package contents, go to the Contents Resources folder. Copy image.png into that

folder.

Revised November 24, 2021

9 Turning graphics shaders into nodes Page 106 of 162

9 Turning graphics shaders into nodes

New in Vuo 2.0If you’re familiar with the programming languages C/C++ and GLSL, you can create your own graphics

nodes using Vuo’s SDK.

For certain kinds of graphics nodes, there’s a shortcut. You don’t have to write C/C++ boilerplate,

just GLSL. And you don’t have to use the Vuo SDK; you can edit the code without leaving the Vuo

application.

Vuo can turn GLSL fragment shaders in Interactive Shader Format (ISF) into nodes. The ISF code’s

inputs and output are automatically turned into input and output ports on the node.

9.1 Creating an ISF node

There are two ways to begin developing an ISF node in Vuo. One is to start with an ISF fragment

shader that you’ve already written or downloaded. Save the file to the same location that you would

install a node. Then find the node in your Node Library, right-click on it, and go to Edit Shader… . (Vuo

supports loading ISF source code consisting of a single .fs file. If the source code also has a vertex

shader in a .vs file, Vuo may or may not be able to load it; this is an experimental feature.)

The other way is to start from scratch. Go to Ablage Neuer Schattierer Bildfilter , Bildgenerator ,

or Bildübergang . (Making compositions fit a mold with protocols explains Image Filters, Image Gen-

erators, and Image Transitions.) This opens a window with a small template as a starting point.

Revised November 24, 2021

https://api.vuo.org/2.4.0/group___developing_node_classes_types.html
https://www.interactiveshaderformat.com/

9 Turning graphics shaders into nodes Page 107 of 162

9.2 Editing an ISF node

The ISF code’s inputs appear as published input ports in the left sidebar. As with published input

ports in a composition, you can edit their default values and suggested ranges, rename them, and add

more. The published input ports correspond to variables in the source code (as explained later in this

section). If you rename a published input port, you also need to rename the corresponding variable.

You can preview the shader using the Ausführen button. You can edit the shader’s published input

ports and GLSL code while it’s running. Changes to a published input port’s value and details take

effect immediately. For other kinds of changes, after editing, go to Ausführen Neustart to make your

changes take effect in the running preview.

If there are any problems with your shader that prevent it from compiling, the error messages are

displayed at the bottom of the window, with the relevant lines marked alongside the code.

To change the title, keywords, description, and other metadata of the ISF node, go to Bearbeiten

Informationen zur Aufbau… .

If you’d prefer, you can edit the ISF source code in a text editor of your choice. Be aware that changes

will only take effect in Vuo when you save the file. You won’t see errors reported in your text editor,

only in Werkzeuge Konsole anzeigen . If you’re using TextEdit, be sure to disable Smart Quotes.

9.3 Saving an ISF node

To be able to use a shader as a node, you’ll need to save it to one of the locations where you would

install a node.

You can also edit and run shaders in Vuo without installing them as nodes. These shaders can be

saved anywhere on your computer.

Revised November 24, 2021

9 Turning graphics shaders into nodes Page 108 of 162

9.4 How ISF source code translates to a Vuo node

This section explains how elements in the ISF source code map to elements of the Vuo node. The

mapping looks a little different depending on whether you’re editing the ISF source code within Vuo

or in your own text editor.

9.4.1 Node metadata

As with subcompositions and other custom nodes, when you install an ISF file as a node, the file name

becomes the node class name. For example, an ISF file called me.image.squiggle.fs becomes a

node with class name me.image.squiggle.

9.4.1.1 When editing in a text editor The keys and values in the JSON-formatted comment at the

beginning of the ISF file are translated to the Vuo node as follows.

ISF key Vuo node characteristic Notes

LABEL Title Shown at the top of the node.

DESCRIPTION Description Shown in the Node Library.

CREDIT Appended to description Shown in the Node Library.

VSN Version Shown in the Node Library.

KEYWORDS Keywords Used when searching the Node Library.

9.4.1.2 When editing within Vuo When editing the ISF source code inside of Vuo, the JSON-

formatted comment is hidden. Instead, use Bearbeiten Informationen zur Aufbau… to edit the node

metadata.

9.4.2 Ports

9.4.2.1 When editing in a text editor In most cases, the input and output ports on the Vuo node

correspond to the items listed under INPUTS and OUTPUTS in the ISF file’s JSON-formatted comment.

ISF key Vuo port characteristic Notes

NAME Internal name Used when saving a composition to file.

LABEL Display name Shown on the node.

TYPE Data type See the next section for details.

DEFAULT Initial/default constant

value

For input ports only.

Revised November 24, 2021

9 Turning graphics shaders into nodes Page 109 of 162

ISF key Vuo port characteristic Notes

MIN, MAX, STEP Suggested minimum,

maximum, and step value

For input ports only. Used in the input

editor.

VALUES, LABELS Menu items For integer input ports with a fixed set of

options. Used in the input editor.

If an ISF input has ”TYPE”=”size”, it is turned into two integer input ports on the Vuo node: Width

and Height.

If an ISF file provides no way to determine the output image’s size — no input with ”TYPE”:”image”
or ”TYPE”=”size” — then input ports Width and Height are automatically added to the Vuo node.

If an ISF file lacks an output with ”TYPE”=”image”, an output port called Output Image is added

automatically to the Vuo node.

One Vuo input port is unusual in that it’s not determined by the INPUTS and OUTPUTS (or lack thereof)

in the JSON-formatted comment, but rather by the content of the GLSL code. That is the Time port. In

any ISF shader, a uniform called TIME of type float is automatically declared. If you use the TIME uni-

form anywhere in your GLSL code, an input port called Time is added to your Vuo node automatically.

9.4.2.2 When editing within Vuo Instead of editing the INPUTS in the JSON-formatted comment,

which is hidden, you can add, remove, and modify the input ports that are displayed in the sidebar of

the shader editor.

Each input port is available as a uniform in the ISF code. Typically, the uniform name is the same as

the port name. There are two exceptions. For an Image Filter shader, the uniform for the image input

port is called inputImage. For any shader, the time input port corresponds to uniform TIME.

9.4.3 Data types

Vuo supports most ISF data types plus some additional data types specific to Vuo.

ISF data type Vuo data type Vuo-specific?

event Boolean no

bool Boolean no

long Integer no

float Real no

color Color no

image Image no

Revised November 24, 2021

9 Turning graphics shaders into nodes Page 110 of 162

ISF data type Vuo data type Vuo-specific?

point2d 2D Point no

point3d 3D Point yes

point4d 4D Point yes

colorDepth Image Color Depth yes

size Converted to two Integer ports yes

bool[] List of Boolean yes

long[] List of Integer yes

float[] List of Real yes

point2d[] List of 2D Point yes

point3d[] List of 3D Point yes

point4d[] List of 4D Point yes

color[] List of Color yes

9.4.4 Output image size and color depth

If the Vuo node created from an ISF shader has input ports Width and Height, the output image’s size

is set by these ports. Otherwise, the output image’s size is the same as the image in the first populated

image port — in other words, the top-most image port whose popover shows a value other than “(no

image)”.

If the Vuo node has an input port of type Image Color Depth, the output image’s color depth is set by

that port. Otherwise, the output image’s size matches the image in the first populated image port.

9.4.5 Coordinates

Although not part of the ISF 2.0 specification, to be consistent with many official and unofficial exam-

ples of ISFs, Vuo treats inputs of type 2D point specially. If an input has type 2D point and does not

have MIN and MAX specified, then the input port value is scaled from normalized coordinates to pixel

coordinates when used as a uniform in the GLSL code. For example, if an input port has value (1.0,

0.5) and the output image is to be 1000 x 800 pixels, then the uniform has value (1000, 400).

3D and 4D points are not scaled.

Revised November 24, 2021

9 Turning graphics shaders into nodes Page 111 of 162

9.4.6 Examples

The examples below focus on how ISF source code translates to Vuo node characteristics, with minimal

GLSL code. (For examples with more interesting GLSL code, see the ISF website.) After each ISF source

listing is the Vuo node that it creates.

Listing 1: Input and output ports are added automatically.

1 /*{
2 ”LABEL”:”Make Red Image”
3 }*/
4

5 void main()
6 {
7 gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
8 }

Listing 2: Input and output ports are specified in the ISF code.

1 /*{
2 ”ISFVSN”:”2.0”,
3 ”TYPE”:”IMAGE”,
4 ”LABEL”:”Make Opaque Color Image”,
5 ”INPUTS”:[
6 {

Revised November 24, 2021

https://www.interactiveshaderformat.com/

9 Turning graphics shaders into nodes Page 112 of 162

7 ”NAME”:”fill”,
8 ”LABEL”:”Fill Color”,
9 ”TYPE”:”color”,

10 ”DEFAULT”:
11 {
12 ”r”:0.0,
13 ”g”:0.0,
14 ”b”:1.0,
15 ”a”:1.0
16 }
17 },
18 {
19 ”TYPE”:”size”
20 }
21],
22 ”OUTPUTS”:[
23 {
24 ”NAME”:”colorImage”,
25 ”TYPE”:”image”
26 }
27]
28 }*/
29

30 void main()
31 {
32 gl_FragColor = vec4(fill.rgb, 1.0);
33 }

Revised November 24, 2021

9 Turning graphics shaders into nodes Page 113 of 162

Listing 3: An input port with suggested minimum and maximum values.

1 /*{
2 ”LABEL”:”Replace Red Channel”,
3 ”INPUTS”:[
4 {
5 ”NAME”:”inputImage”,
6 ”TYPE”:”image”
7 },
8 {
9 ”NAME”:”red”,

10 ”TYPE”:”float”,
11 ”MIN”:0.1,
12 ”MAX”:0.9,
13 ”DEFAULT”:0.5
14 }
15]
16 }*/
17

18 void main()
19 {
20 gl_FragColor = vec4(red, IMG_THIS_NORM_PIXEL(inputImage).gba);
21 }

Listing 4: A menu input port.

1 /*{
2 ”LABEL”:”Blend Image Components”,
3 ”INPUTS”:[
4 {
5 ”NAME”:”image1”,
6 ”TYPE”:”image”
7 },

Revised November 24, 2021

9 Turning graphics shaders into nodes Page 114 of 162

8 {
9 ”NAME”:”image2”,

10 ”TYPE”:”image”
11 },
12 {
13 ”NAME”:”blendType”,
14 ”TYPE”:”long”,
15 ”VALUES”:[0, 1],
16 ”LABELS”:[”Darker Component”, ”Lighter Component”]
17 }
18]
19 }*/
20

21 void main()
22 {
23 vec4 color1 = IMG_THIS_NORM_PIXEL(image1);
24 vec4 color2 = IMG_THIS_NORM_PIXEL(image2);
25 gl_FragColor = (1 - blendType) * min(color1, color2)
26 + blendType * max(color1, color2);
27 }

9.5 Supported ISF features

Vuo recognizes most fragment shaders that conform to the ISF 2.0 specification.

9.5.1 Functions

Vuo supports these ISF-specific functions:

Revised November 24, 2021

https://www.interactiveshaderformat.com/spec

9 Turning graphics shaders into nodes Page 115 of 162

Function Description

vec4 IMG_PIXEL(image, vec2) The color of a pixel in an image, using

pixel-based coordinates.

vec4 IMG_NORM_PIXEL(image, vec2) The color of a pixel in an image, using

normalized coordinates.

vec4 IMG_THIS_PIXEL(image) The color of the pixel that the fragment shader

is currently executing on.

vec4 IMG_THIS_NORM_PIXEL(image) The color of the pixel that the fragment shader

is currently executing on.

vec2 IMG_SIZE(image) The size of an image, in pixels.

Vuo also supports these Vuo-specific functions in ISF code:

Function Description

int LIST_LENGTH(list) The number of items in a list that was declared in

INPUTS.

9.5.2 Uniforms

Vuo supports these ISF-specific uniforms:

Uniform Description

vec2 RENDERSIZE The size of the output image, in pixels.

float TIME The time since the composition started, in seconds.

float TIMEDELTA The time since the previous frame was rendered, in seconds.

For the first frame, this is 0.

vec2 isf_FragNormCoord The normalized coordinates of the pixel that the fragment

shader is currently executing on.

vec4 DATE The current date and time: year, month, day, and seconds

since midnight.

int FRAMEINDEX 0 for the 1st frame, 1 for the 2nd frame, 2 for the 3rd frame,

and so on.

9.5.3 Unsupported

Vuo does not currently support:

Revised November 24, 2021

9 Turning graphics shaders into nodes Page 116 of 162

• multiple passes/buffers (PASSES key and PASSINDEX uniform)

• image file loading (IMPORTED key)

• audio input (audio and audioFFT data types)

• IDENTITY key

Revised November 24, 2021

10 The Vuo editor Page 117 of 162

10 The Vuo editor

10.1 The Node Library

When you create a composition, your starting point is always the Node Library (Ansicht

Knotenbibliothek Knotenbibliothek anzeigen). The node library is a tool that will assist you in

exploring and making use of the collection of Vuo building blocks (“nodes”) available to you as you

create your artistic compositions.

Because you’ll be working extensively with the node library throughout your composition process, we

have put a great deal of effort into maximizing its utility, flexibility, and ease of use. It has been de-

signed to jump-start your Vuo experience— so that youmay sit down and immediately begin exploring

and composing, without having to take time out to study reams of documentation.

When you open a new composition, the Node Library is on the left. The Node Library shows all the

nodes that are available to you. In the Node Library, you can search for a node by name or keyword.

You can see details about a node, including its documentation and version number.

10.1.1 Docking and visibility

By default, the node library is docked within each open composition window. You can undock the node

library by dragging or double-clicking its title bar. While undocked, only a single node library will be

displayed no matter how many composition windows are open. You can re-dock the node library by

double-clicking its title bar.

The symbols that represent macOS
keys are listed in the introduction to
Keyboard Shortcuts.

Tip

You can hide the node library by clicking the circle within its title bar, or by pressing ⎋ once (if

the search bar is empty) or twice (first to clear the search bar, then to close the node library). Once

hidden, you can re-display it by selecting Ansicht Knotenbibliothek Knotenbibliothek anzeigen or

using ⌘↵ . The same command or shortcut, ⌘↵ , will put your cursor in the node library’s search

box.

Whether you have left your library docked or undocked, visible or hidden, your preference will be

remembered the next time you launch Vuo.

Revised November 24, 2021

10 The Vuo editor Page 118 of 162

10.1.2 Node names and node display

Each node has two names: a title and a class name. The node title is a quick description of a node’s

function; it’s the most prominent name written on a node. The node class name is a categorical name

that reveals specific information about a node; it appears directly below the node’s title.

title
class name

Count
vuo.math.count

Increment
Decrement
Set Count

Let’s use the Count node as an example. “Count” is the node’s title, which reveals that the node

performs the function of counting. The class name is “vuo.math.count”. The class name reveals the

following: Team Vuo created it, “math” is the category, and “count” is the specific function (and title

name).

Depending on your level of familiarity with Vuo’s node sets and your personal preference, you might

wish to browse nodes by their fully qualified family (“class”) name (e.g., “vuo.math.add”) or by their

more natural human-readable names (“Add”).

Youmay select whichever displaymode you prefer, and switch between themodes at your convenience;

the editor will remember your preference between sessions. You can toggle between node titles

and node class names using the menu items Ansicht Knotenbibliothek Anzeige nach Klasse or

Anzeige nach Namen .

The Editing node settings section explains how to change node titles.

10.1.3 Node Documentation Panel

The node library makes the complete set of Vuo core nodes available for you to browse as you compose.

By clicking on a node in the library, a description of the node will appear in the Node Documentation

Panel below the node library. It describes the general purpose of the node as well as details that will

help you make use of it. In addition to the Vuo core nodes, if you have access to pro nodes, you’ll see

those displayed.

If you’re interested in exploring new opportunities, this is an ideal way to casually familiarize yourself

with the building blocks available to you in Vuo.

Revised November 24, 2021

10 The Vuo editor Page 119 of 162

10.1.4 Searching for nodes

At the top of the Node Library is a search bar. When you type in a search phrase, matching nodes will

show up in the Node Library. Pressing ⎋ while in the search bar will clear out your selection and

show the entire Node Library, as will deleting your search term by pressing ⌫ .

You can search by node title, node class name, and a variety of keywords:

Type of search Example search phrase Example search results

Keyword trigonometry Calculate Sine,

Calculate Cosine,

and others

Node title radial blur Blur Image Radially

Node class name vuo.mouse Receive Mouse Moves (vuo.mouse.move2),
Receive Mouse Buttons (vuo.mouse.button2),
and others

Port name month Make Date-Time,

Get Date-Time Values,

and others

Input port name in:month Make Date-Time and

Make Relative Date-Time

Output port name out:month Get Date-Time Values and

Get Relative Date-Time Values

Input port type in:videoframe Save Frames to Movie,

Get Frame Values (Video),

and others

Output port type out:point3d Curve, Scale, and others

Nodes with triggers trigger, fire, or bang Nodes that have one or more trigger ports

Input and output

nodes

i/o Nodes whose title begins with Receive or Send

Image filters filter Nodes that input one image and output a

filtered image

Image generators generator Nodes that produce an image

Image transitions transition Nodes that input two images and output an

in-between image

Pro nodes pro or premium Nodes that are only available with a Pro license

Subcompositions subcomposition or Nodes that are subcompositions

source:.vuo

Community nodes source:.vuonode, Nodes installed as .vuonode, .fs, or .c files

source:.fs, or

source:.c

Revised November 24, 2021

10 The Vuo editor Page 120 of 162

The search finds all nodes that match on the title or class name or keyword. For example, if you search

for filter, the results include Filter Skeleton (which has filter in the title and class name), Allow First

Event (which has filter as a keyword), and Adjust Image Colors (which is an image filter). If you wanted

to narrow the search to nodes like the last one, you could search for image filter.

If the search doesn’t find a node that you expect to see:

• Make sure you’re using a version of Vuo that has the node.

– If the node was recently added, make sure you’re using the latest version of Vuo.

– If the node has been deprecated, instead use the node that is meant to replace it.

• If the node is a Pro node, make sure you’ve activated Vuo Pro.

• If the node is a subcomposition or a community node, review the steps for installing a node.

10.2 Working on the canvas

10.2.1 Putting a node on the canvas

The node library isn’t just for reading about nodes, but for incorporating them into your compositions.

Once you have found a node of interest, you may create your own copy by dragging it straight from

the node library onto your canvas, or by double-clicking the node listing within the library.

Not a mouse person? Navigating the library by arrow key and pressing ↵ to copy the node to your

canvas works just as well.

You may copy nodes from the library individually, or select any number or combination of nodes from

the library and add them all to your canvas simultaneously with a single keypress or mouse drag —

whatever best suits your work style.

You can add certain commonly used nodes — such as Share Value, Hold Value, and Allow Changes —

to your composition without a trip to the node library. Just right-click on the canvas and select an item

from the Knoten einfügen menu.

Revised November 24, 2021

10 The Vuo editor Page 121 of 162

10.2.2 Drawing cables to create a composition

You can create a cable by dragging from a node’s output port to a compatible input port or from a

node’s output port to a compatible input port.

Compatible ports are those that output and accept matching or convertible types of data. Compat-

ible ports are highlighted as you drag your cable, so you know where it’s possible to complete the

connection.

If you complete your cable connection between two ports whose data types are not identical, but that

are convertible using an available type converter (e.g., vuo.math.round for rounding real numbers to

integers), that type converter will be automatically inserted when you complete the connection.

Sometimes existing cables may also be re-routed by dragging (or “yanking”) them away from the input

port to which they are currently connected. It is possible to yank the cable from anywhere within its

yank zone. You can tell where a cable’s yank zone begins by hovering your cursor near the cable. The

yank zone is the section of the cable with the extra-bright highlighting. If no yank zone is highlighted,

you’ll need to delete and add back the cable.

10.2.3 Adding a comment

You can add a comment to a composition by using the Bearbeiten Kommentar einfügen menu option,

or by right-clicking on the canvas and selecting Kommentar einfügen from the menu.

When you create a comment, you will be in editing mode, and can start typing the comment’s text.

Text inside a comment uses Markdown formatting. This is especially useful if you want to include a

link, or make the text larger by using headings. To start a new line, finish the line with two or more

trailing spaces, then press ⌥↵ to continue on a new line. To start a new paragraph, add a blank line

after the previous line of text, ⌥↵⌥↵ .

To end editing, either press ↵ or click outside the comment area. To reenter editing mode, double

click within the comment area or right-click on the comment and pick Bearbeiten… from the menu.

To change the color of a comment, right-click on the comment and pick Farbton from the menu.

To move a comment, hover over the top edge of the comment and drag the handle that appears.

To resize a comment, hover over the bottom-right corner of the comment and drag the handle that

appears.

To select a comment, click on the comment’s text, click near the top edge of the comment, or

rubberband-select the top edge of the comment. (Clicking or rubberbanding the part of the comment

below the text does not select the comment, so when you place nodes in that area you can easily

rubberband-select the nodes.)

Revised November 24, 2021

https://www.markdownguide.org/cheat-sheet

10 The Vuo editor Page 122 of 162

10.2.4 Copying and pasting nodes, cables, and comments

You can select one or more nodes or comments, and copy or cut them using the Bearbeiten Kopieren

and/or Bearbeiten Schnitt menu options, or their associated keyboard shortcuts. Any cables or type

converters connecting the copied nodes will automatically be copied along with them.

You can paste your copied components into the same composition, a different composition, or a text

editor, using the Bearbeiten Einfügen menu option or its keyboard shortcut.

Select one or more nodes and drag
them while holding down ⌥ to
duplicate and drag your selection
within the same composition. Press
⎋ during the drag to cancel the
duplication.

Tip

10.2.5 Deleting nodes, cables, and comments

Delete one or more nodes, cables, and/or comments from your canvas by selecting them and either

pressing ⌫ or right-clicking one of your selections and selecting Löschen from its context menu.

When you delete a node, any cables connected to that node are also deleted. A cable with a yank zone

may also be deleted by yanking it from its connected input port and releasing it.

Any type converters that were helping to bridge non-identical port types are automatically deleted

when their incoming cables are deleted.

10.2.6 Rearranging nodes, cables, and comments

You can move nodes and comments within your canvas by selecting one or more of them and either

dragging them or pressing the arrow keys on your keyboard.

Hold down ⇧ while pressing an
arrow key to move the nodes even
faster.

Tip

10.2.7 Replacing nodes

Sometimes after adding a node to a composition, you might decide to replace it with something a

little different. For example, you might like to replace a Crop Image node with a Resize Image node.

If there are already cables hooked up to the original node, it can be inconvenient to disconnect each

one and connect it to the new node. Fortunately, there’s an alternative.

Right-click on the original node and go to the Ändern menu. Here, you can select from a list of similar

nodes that can be substituted in without breaking any cable connections.

Revised November 24, 2021

10 The Vuo editor Page 123 of 162

10.2.8 Editing node settings

You can change a node’s title (displayed at the top of the node) by double-clicking or hovering over

the title and pressing ↵ , then entering the new title in the node title editor that pops up. You may

save or dismiss your changes by pressing ↵ or ⎋ , respectively, just as you would using a port’s

input editor. You can also select one or more nodes from your canvas and press ↵ to edit the node

titles for each of the selected nodes in sequence. If you delete the title and don’t enter a new title,

the node will default to its original title.

You can change a node’s tint color by right-clicking on the node, selecting Farbton from its context

menu, and selecting your color of choice. Tint colors can be a useful tool in organizing your com-

position. For example, they can be used to visually associate nodes working together to perform a

particular task.

10.2.9 Editing port values and settings

You can change the constant value for an input port by double-clicking the port, then entering the

new value into the input editor that pops up. (Or you can open the input editor by hovering the cursor

over the port and pressing ↵ .) When the input editor is open, press ↵ to accept the new value or

⎋ to cancel.

Input editors take on various forms depending on the data type of the specific input being edited —

they may present as a text field, a menu, or a widget (such as color picker wheel), for example.

Some ports take lists as input. These ports have special attached “drawers” containing 0 or more input

ports whose values will make up the contents of the list. Drawers contain two input ports by default,

but may be resized to include more or fewer ports by dragging the “drag handle.”

You can change how a trigger port should behave when it’s firing events faster than downstream nodes

can process them. Do this by right-clicking on the port, selecting Ereignisdrosselung einstellen from

its context menu, and selecting either Ereignisse einreihen or Ereignisse löschen .

10.2.10 Finding nodes on the canvas

Using Bearbeiten Suchen Suchen… , you can search the canvas for nodes matching a search phrase.

Type of search Example search phrase Example search results

Node title blur image rad Blur Image Radially

Node class name vuo.mouse Receive Mouse Moves (vuo.mouse.move2),
Receive Mouse Buttons (vuo.mouse.button2),

Revised November 24, 2021

10 The Vuo editor Page 124 of 162

Type of search Example search phrase Example search results

and others

Port name month Get Date-Time Values,

Make Date-Time,

and others

Subcompositions .vuo Nodes that are subcompositions

Community nodes .vuonode, .fs, or .c Nodes installed as .vuonode, .fs, or .c files

Deprecated nodes deprecated Nodes that are deprecated

10.2.11 Viewing a composition

If your composition is too large to be displayed within a single viewport, you can use the Zoom but-

tons within the composition window’s menubar, or the Ansicht Tatsächliche Größe / Hineinzoomen

/ Rauszoomen / Zum Anpassen zoomen menu options, or a pinch gesture on your trackpad, to adjust

your view. You can use the scrollbars to scroll horizontally or vertically within the composition. Alter-

natively, if you have no nodes or cables selected, you can scroll by pressing the arrow keys on your

keyboard. You can also grab the workspace by holding down the spacebar while dragging.

Hold down ⇧ while pressing an ar-
row key to scroll even faster.

Tip

10.2.12 Publishing ports

A composition’s published ports are displayed in sidebars, which you can show and hide using the

menu Ansicht Show/Hide Published Ports .

You can publish any input or output port in a composition. Do this by right-clicking on the port and

selecting Port veröffentlichen from the context menu. Alternatively, drag a cable from the port to the

Veröffentlichen well that appears in the sidebar when you start dragging. You can unpublish the port

by right-clicking on the port again and selecting Port löschen .

You can create a published port without immediately connecting it to a port inside the composition

by clicking on the New Port button in the sidebar. This pops up a menu for you to choose the data

type of the published port. Once the published port has been created, you can drag a cable from it

and connect the cable to any compatible port within the composition.

In the sidebars, you can rename a published port by double-clicking on the name or by right-clicking

on the published port and selecting Port umbenennen… . You can reorder published ports (except

those that are part of a protocol) by dragging the name of a published port up or down in the sidebar.

For published ports with numerical data types (integers, real numbers, 2D points, 3D points, and 4D

points), you can modify the behavior of their input editors by right-clicking on the published port in

the sidebar and selecting Details bearbeiten… . The Suggested Min and Suggested Max determine the

range of values provided by the input editor’s slider or spinbox (arrow buttons). The Suggested Step

controls the amount by which each click on a spinbox button increments or decrements the value.

Revised November 24, 2021

10 The Vuo editor Page 125 of 162

10.2.13 Using a protocol for published ports

To create a composition with a predetermined set of published ports defined by a protocol, go to

the Ablage menu, select Neuer Aufbau aus Vorlage , and select the protocol you want. Typically, a

protocol is used when running a Vuo composition inside another application, such as a VJ or video

postproduction app. That application should instruct you about the protocol to select.

The published ports in a protocol appear in a tinted area of the published port sidebars, with the

protocol name at the top. You can’t rename or delete these published ports. However, you can add

other published ports to the composition and rename or delete them as usual.

10.3 Running a composition

After you’ve built your composition (or while you’re building it), you can run it to see it in action.

10.3.1 Starting and stopping a composition

If your composition doesn’t work as
expected, see Troubleshooting.

Tip

You can run a composition by clicking the Run button. (Or go to Ausführen Ausführen .)

You can stop a composition by clicking the Stop button. (Or go to Ausführen Beenden .)

If you start a composition that was created using Neuer Aufbau aus Vorlage , then extra functionality

will be added to the composition to help you preview it. Its protocol published input ports will re-

ceive data and events, and its protocol published output ports will send their data and events to a

preview window. For example, if you run a composition with the Image Filter protocol, then image

and time data will be fed into the composition, and the composition’s image output will be rendered

to a window.

10.3.2 Firing an event manually

As you’re editing your running composition, you may want to fire extra events so that your changes

become immediately visible, rather than waiting for the next time a trigger port happens to fire.

You can cause a trigger port to fire an event by right-clicking on the trigger port to pop up a menu,

then choosing Feuerereignis . Or you can hold down ⌘ while left-clicking on the trigger port. If the

trigger port carries data, it outputs its most recent data along with the event.

You can also fire an event directly into an input port (as if it had an incoming cable from an invisible

trigger port). To do this, you can right-click on the input port and choose Feuerereignis , or you can

hold down ⌘ and left-click on the input port.

If you’ve already manually fired an event, you can fire another event through the same port by going

to Ausführen Event erneut abfeuern . This fires an event through the trigger port or input port that

most recently had an event manually fired.

Revised November 24, 2021

10 The Vuo editor Page 126 of 162

10.4 Editing composition information

You can enter metadata about a composition by going to Bearbeiten Informationen zur Aufbau… .

The information you enter in this dialog can help people understand how to use your composition or

products exported from it, as well as provide a reminder to yourself.

Some of the fields in this dialog — Name, Version, Description, Copyright, Homepage Link, and Doc-

umentation Link — are displayed in the Node Library’s lower panel when the composition is open. If

you export an app from the composition, these fields are shown in the app’s About dialog.

The Keywords field is used when the composition is installed as a subcomposition. You can search the

Node Library for the subcomposition using the keywords.

The Icon for Exported App, Bundle Identifier, and FxPlug Group fields are used in apps or plugins

exported from the composition.

The License field is saved in the composition (.vuo) file. You can view it by opening the file in a text

editor.

10.5 Working with subcompositions

With a subcomposition, you can use a composition as a node within other compositions. For more on

what subcompositions are and why to use them, see Using subcompositions inside of other composi-

tions.

10.5.1 Installing a subcomposition

To turn part of an existing composition into a subcomposition, select those nodes and cables within

the composition, then go to the Bearbeiten Paket als Unterbau menu item.

To turn an entire composition into a subcomposition, create or open the composition and select the

Ablage In Benutzerbibliothek verschieben menu item. (If your composition has not yet been saved,

the menu item will read In Benutzerbibliothek speichern , and you’ll be prompted to enter a title for

your node.) The subcomposition node will immediately be listed and highlighted within your Node

Library for use within other compositions.

To insert an empty subcomposition into a composition, select the Bearbeiten Unterbau einfügen

menu item.

To install a subcomposition that you’ve downloaded, see Installing a node.

Revised November 24, 2021

10 The Vuo editor Page 127 of 162

10.5.2 Editing a subcomposition

There are several ways to edit a subcomposition after it has already been installed:

• Right-click on the subcomposition node, either within the Node Library or on the canvas, and

select the Edit Composition… context menu item.

• Double-click on the body of the node on the canvas.

• Select the node on the canvas and press⌘↓.

• Click the “Edit Composition…” link in the node library documentation panel.

10.5.3 Uninstalling a subcomposition

To remove an installed subcomposition, right-click on the subcomposition node within the Node Li-

brary and select the Im Finder anzeigen context menu item. Locate the .vuo file matching the name

of your subcomposition and remove it from the folder.

10.6 Changing the editor’s appearance

In the View menu are several settings to make the editor more comfortable to use depending on your

lighting conditions, screen size, and personal taste.

10.6.1 Dark mode

Ansicht Dunkle Schnittstelle toggles between a light and a dark color scheme for the editor. The

dark interface is only available in Vuo Pro.

10.6.2 Transparency

Ansicht Canvas Transparency switches between three levels of transparency for the editor. With

transparency enabled, other windows behind the editor are visible. This makes it possible to view a

composition and its graphics output at the same time when both are fullscreen.

10.6.3 Grid points and lines

Ansicht Grid Linien / Punkte show grid markings on the canvas.

Ansicht Grid Snap toggles the “snap to grid” setting. When you position a node on the canvas

with Snap enabled, the position is constrained so it’s easier to align the node with others precisely.

Revised November 24, 2021

10 The Vuo editor Page 128 of 162

10.6.4 Toolbar labels

Ansicht Show/Hide Toolbar Labels toggles between the regular toolbar with labels on the buttons

and a compact toolbar without labels. The compact toolbar is only available in Vuo Pro.

Revised November 24, 2021

10 The Vuo editor Page 129 of 162

10.7 Keyboard Shortcuts

Vuo has keyboard shortcuts for working with your composition.

In the keyboard shortcuts below, these symbols represent keys in macOS:

Symbol Definition

⌘ Command key

⌃ Control key

⌥ Option key

⇧ Shift key

⌫ Delete key

↵ Return key

⎋ Escape key

10.7.1 Working with composition files

Shortcut Definition

⌘N New Composition

⌘O Open Composition

⇧⌘O Open the most recent composition

⌥⌘O Open a random example composition

⌘↓ Open the composition contained in the selected subcomposition node

⌘S Save Composition

⇧⌘S Save Composition As

⌘W Close Composition

10.7.2 Controlling the composition canvas

Shortcut Definition

⌘↵ Show Node Library

⎋ Clear Node Library search box, then close Node Library

⌘= Zoom In

⌘- Zoom Out

⌘9 Zoom to Fit

⌘0 Actual Size

⇧ Double-click on comment Zoom to fit the comment

Revised November 24, 2021

https://support.apple.com/kb/ht1343

10 The Vuo editor Page 130 of 162

Shortcut Definition

Spacebar Drag Move the canvas viewport

⌘1 Set canvas transparency to None

⌘2 Set canvas transparency to Slightly Transparent

⌘3 Set canvas transparency to Very Transparent

⌘4 Show or hide published ports

10.7.3 Creating and editing compositions

Shortcut Definition

⌘A Select all

⇧⌘A Select none

⌘C Copy

⌘V Paste

⌘X Cut

⌘Z Undo

⇧⌘Z Redo

⌘F Find

⌘G Find Next

⇧⌘G Find Previous

⌫ Delete

⌘I Composition Information

⌥ Drag near input port Duplicate the cable connected to the input port.

⌥ Drag selected components Duplicate the selected nodes, cables, and comments.

⌥ while rubberband selecting Select all cables within the rubberband area, not just those

connected to selected nodes.

⇧ while dragging cable Change the data-and-event cable being dragged to event-only.

↑↓←→ Move the selected nodes, cables, and comments around on the

canvas. Hold⇧ to move further.

↵ Hover over a node title and press↵ to edit it.

↵ Select one or more nodes and press↵ to edit their titles.

↵ Hover the mouse over a constant value and press↵ to edit it.

Press↵ to accept the new value, or⎋ to go back to the old value.

⌥↵ Open a Text input editor and press⌥↵ to add a linebreak.

10.7.4 Creating and editing shaders

Revised November 24, 2021

11 The command-line tools Page 131 of 162

Shortcut Definition

⌘5 Show or hide GLSL/ISF Quick Reference

10.7.5 Running compositions (when the Vuo editor is active)

Shortcut Definition

⌘. Stop

⌘R Run

⇧⌘R Restart

⌘ Click Do this on an input port or a trigger port to manually fire an event.

⌘T Re-fire Event

10.7.6 Running compositions (when the composition is active)

Shortcut Definition

⌘Q Stop the composition

⌘F Toggle between windowed and fullscreen

⌥⌘E Toggle recording the composition’s graphical output to a movie file

10.7.7 Application shortcuts

Shortcut Definition

⌘Q Quit the Vuo editor

⌘H Hide the Vuo editor

11 The command-line tools

As an alternative to using the Vuo editor, you can use command-line tools to work with Vuo composi-

tions. Althoughmost Vuo users will only need the Vuo editor, you might want to use the command-line

tools if:

• You’re writing a program or script that works with Vuo compositions. (Another option is the Vuo

API.)

Revised November 24, 2021

https://api.vuo.org/2.4.0/group___developing_applications.html
https://api.vuo.org/2.4.0/group___developing_applications.html

11 The command-line tools Page 132 of 162

• You’re working with Vuo compositions in a text-only environment, such as SSH.

A Vuo composition (.vuo file) is actually a text file based on the Graphviz DOT format. You can go

through the complete process of creating, compiling, linking, and running a Vuo composition entirely

in a shell.

11.1 Installing the Vuo SDK

• On vuo.org, select Get Vuo > Additional downloads

• Under the section for themost recent version, download the SDK package (vuo-2.4.0-sdk.pkg)
• Install the package file (double-click on it in Finder)

• Open the /Library/Developer/Vuo folder

– You can move the /Library/Developer/Vuo folder, but in order for the command-line

binaries (vuo-compile, vuo-link, vuo-export) to work, they must be in the same

folder as the Framework (Vuo.framework) and resources folder.

• Next, add the command-line binaries to your PATH so you can easily run them from any folder.

In Terminal, run this command if you’re using the ZSH shell (default in macOS 10.15 and later):

echo "export PATH=\$PATH:/Library/Developer/Vuo/framework" >> ~/.zprofile

• or if you’re using the BASH shell (default in macOS 10.14 and earlier):

echo "export PATH=\$PATH:/Library/Developer/Vuo/framework" >> ~/.bash_profile

• Close and re-open the Terminal window

11.2 Getting help

To see the command-line options available, you can run each command-line tool with the --help
flag.

Revised November 24, 2021

https://graphviz.gitlab.io/_pages/doc/info/lang.html
https://vuo.org/releases

11 The command-line tools Page 133 of 162

11.3 Building a composition on the command line

You can turn a .vuo file into an executable in two steps.

First, compile the .vuo file to a .bc file (LLVM bitcode):

Listing 5: Compiling a Vuo composition

1 vuo-compile --output RenderTextLayer.bc RenderTextLayer.vuo

Then, turn the .bc file into an executable:

Listing 6: Linking a Vuo composition into an executable

1 vuo-link --output RenderTextLayer RenderTextLayer.bc

If you run into trouble building a composition, you can get more information by running the above

commands with the --verbose flag.

If you’re editing a composition in a text editor, the --list-node-classes=dot flag is useful. It

outputs all available nodes in a format that you can copy and paste into your composition.

11.4 Running a composition on the command line

You can run the executable you created just like any other executable:

Listing 7: Running a Vuo composition

1 ./RenderTextLayer

11.5 Exporting a composition on the command line

Using the vuo-export command, you can turn a composition into a movie, an app, or a plugin:

Listing 8: Exporting a Vuo composition to a movie

1 vuo-export movie --output GenerateCheckerboardImage.mov GenerateCheckerboardImage.vuo

Revised November 24, 2021

11 The command-line tools Page 134 of 162

Listing 9: Exporting a Vuo composition to an application

1 vuo-export macos --output RenderTextLayer.app RenderTextLayer.vuo

If you run into trouble exporting a composition, you can get more information by running vuo-export
with the --verbose flag.

This command is equivalent to the Ablage Export Mac App... menu item in the Vuo editor. See

the section Exporting an application for more information.

11.6 Printing the composition source code

Using the vuo-export source command, you can create a picture of your composition:

Listing 10: Rendering a composition

1 vuo-export source --format=pdf --output RenderTextLayer.pdf RenderTextLayer.vuo

This can be useful for making tutorials and documentation, and for working on Vuo’s visual design.

vuo-export source can output either raster (PNG) or vector (PDF or SVG) files. You can create a

PDF, then open it in macOS Preview.app and print it. The command vuo-export --help provides a

complete list of parameters.

Since composition files are in DOT format, you can also render them without Vuo styling using

Graphviz:

Listing 11: Rendering a Vuo composition using Graphviz

1 dot -Grankdir=LR -Nshape=Mrecord -Nstyle=filled -Tpng -oRenderTextLayer.png RenderTextLayer.vuo

Revised November 24, 2021

12 Common patterns - “How do I…” Page 135 of 162

12 Common patterns - “How do I…”

If you’re trying to figure out how to accomplish something in Vuo, one good starting point is the Node

Library search bar. For example, if you want to make a random list of things, search the Node Library

for “random” to find relevant nodes like Make Random List and Shuffle List. Another good starting

point is the example compositions for each node set, found under Ablage Öffnen Beispiel .

Some problems you might want to solve with Vuo aren’t specific to one node or node set. Certain

patterns come up again and again, whether you’re making compositions to display graphics, play

audio, or anything else. This section covers these general patterns. Reviewing these patterns can

help you create compositions more quickly and easily.

12.1 Do something in response to user input

Since Vuo is event-driven, this is easy. Most nodes that get user input have a trigger port that fires

an event each time new input comes in. To make something happen in response to that event, just

connect a cable from the trigger port to the nodes that make it happen.

Here’s an example that makes a circle follow the mouse cursor as the user moves the mouse around.

1

Make	Oval	Layer
vuo.layer.make.oval2

Color
Center Anchor

Position
0 Rotation

0.3 Width
0.3 Height
1 Sharpness
1 Opacity

Receive	Mouse	Moves
vuo.mouse.move2

Window
Any Modifier	Key

Foreground App	Focus

Moved	To

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

12.2 Do something after something else is done

This is often quite easy, too, because of Vuo’s rules for event flow. If you want one node to execute

before another, you can just draw a cable from the first node to the second node. In the composition

below, for each event from Fire Periodically, the two Count nodes always finish executing before the

Add node begins executing.

Revised November 24, 2021

12 Common patterns - “How do I…” Page 136 of 162

1
2

Add
vuo.math.add

Values

Count
vuo.math.count

1 Increment
1 Decrement
0 Set	Count

Count
vuo.math.count

1 Increment
1 Decrement
0 Set	Count

Display	Console	Window
vuo.console.window

Value					Summary Write	Line
Clear

Typed	Line
Typed	Word

Typed	Character

Fire	Periodically
vuo.time.firePeriodically2

1 Seconds Fired	at	Time

Sometimes you might need to enforce a “do something after something else is done” rule that’s more

complicated than putting nodes in a sequence, as above. For example, you might want a composition

to do something only after the user has typed a certain word. The next section explains how to check

for conditions like that and do something when they’re fulfilled.

12.3 Do something if one or more conditions are met

Vuo has a data type that represents whether a condition is met: the Boolean data type. If a node has a

Boolean port, that port’s value can be one of two things: true or false. True means “yes, the condition

is met”. False means “no, the condition is not met”.

When checking if conditions are met, you’ll often be working with nodes that have a Boolean output

port. Many such nodes have a title that starts with “Is” or “Are”, like Is Greater than and Are Equal.

Here’s an example that writes a message on the console windowwhen the user types the word “please”.

please 1
2

Are	Equal
vuo.data.areEqual

Values

Display	Console	Window
vuo.console.window

You	said	the	magic	word. Write	Line
Clear

Typed	Line
Typed	Word

Typed	Character

Select	Event	Output
vuo.select.out.boolean.event

Which
In

False	Option
True	Option

Below is an example (Ablage Öffnen Beispiel Logic Is Mouse Within Intersecting Rectangles)

that checks two conditions: is the mouse cursor within the blue rectangle? is it within the red

rectangle? The Are Any True node says yes (true) if the mouse is within at least one of the rectangles.

The Are All True node says yes if the mouse is within both rectangles. The Is One True node says yes

if the mouse is within one rectangle and not the other.

Revised November 24, 2021

12 Common patterns - “How do I…” Page 137 of 162

1
2

1
2
3

1
2

1
2

In	at	least	one	rectangle?		 1
2

⏎In	both	rectangles?	 3
4

⏎In	exactly	one	rectangle?	 5
6

Append	Texts
vuo.text.append

Texts
Separator

True Include	Empty	Parts
Are	All	True
vuo.logic.areAllTrue

Values

Are	Any	True
vuo.logic.areAnyTrue

Values

Fire	on	Start
vuo.event.fireOnStart

Started

Is	One	True
vuo.logic.isOneTrue

Values

Is	within	Rectangle
vuo.point.within.rectangle

Point
Center
Width
Height

Is	within	Rectangle
vuo.point.within.rectangle

Point
Center
Width
Height

Make	Rectangle	Layer
vuo.layer.make.rect

Color
Center Anchor

Position
0 Rotation

Width
Height

1 Sharpness
0 Roundness
1 Opacity

Make	Rectangle	Layer
vuo.layer.make.rect

Color
Center Anchor

Position
0 Rotation

Width
Height

1 Sharpness
0 Roundness
1 Opacity

Make	Text	Layer
vuo.layer.make.text2

Text
Avenir-Heavy	24pt Font

Center Anchor
(0,	0.5) Position

0 Rotation
Auto Wrap	Width
1 Opacity

Receive	Mouse	Moves
vuo.mouse.move2

Window
Any Modifier	Key

Foreground App	Focus

Moved	To

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

Select	Input
vuo.select.in.boolean

Which
no False	Option
yes True	Option

Select	Input
vuo.select.in.boolean

Which
no False	Option
yes True	Option

Select	Input
vuo.select.in.boolean

Which
no False	Option
yes True	Option

Share	Value
vuo.data.share

(-0.3,	0) Value

Share	Value
vuo.data.share

1 Value

Share	Value
vuo.data.share

0.5 Value

Share	Value
vuo.data.share

(0.3,	-0.1) Value

Here’s one more example. It demonstrates how conditions can be used to coordinate between nodes

downstream of different triggers. The composition displays the message “Camera detected” once it

starts receiving input from the user’s video camera, that is, once the Receive Live Video node’s trigger

port starts firing events. The events from that trigger port change the Switch node’s output to true,

indicating to the rest of the composition that “Camera detected” should be displayed.

1

Make	Text	Layer
vuo.layer.make.text2

Text
HelveticaNeue-Light	36pt Font

Center Anchor
(0,	0) Position

0 Rotation
Auto Wrap	Width

1 Opacity

Receive	Live	Video
vuo.video.receive2

Default Device
Auto Width
Auto Height

Received	Frame

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

Fire	on	Start
vuo.event.fireOnStart

Started

Select	Input
vuo.select.in.boolean

Which
Detecting	camera... False	Option
Camera	detected True	Option

Switch
vuo.logic.switch

Toggle
Turn	On
Turn	Off

12.4 Do something if an event is blocked

Nodes that have an event door on an input port can let some events through and block others. If you

want to do something different depending on whether the event was let through or blocked, you can

use an Are All Hit node.

Below is an example that checks if a barcode was found in an image. Since the Find Barcode in Image

node blocks events when no barcode is found, the Are All Hit node is used to check whether the event

was blocked. Are All Hit outputs false if Find Barcode in Image blocks the event and true otherwise.

Revised November 24, 2021

12 Common patterns - “How do I…” Page 138 of 162

1
2

Are	All	Hit
vuo.event.areAllHit.2

Input	1
Input	2

Find	Barcode	in	Image
vuo.image.findBarcode2

Frame					Image Image
Auto Format

Barcode
Format

Rectangle

Make	Image	Layer
vuo.layer.make.scaled

Frame					Image Image
Center Anchor

(0,	0) Position
0 Rotation
2 Size

Horizontal Fixed
1 Opacity

Make	Text	Layer
vuo.layer.make.text2

Text
HelveticaNeue-Bold	36pt Font

Center Anchor
(0,	0) Position

0 Rotation
Auto Wrap	Width

1 Opacity

Receive	Live	Video
vuo.video.receive2

Default Device
Auto Width
Auto Height

Received	Frame

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

Select	Input
vuo.select.in.boolean

Which
Searching	for	barcode... False	Option

Barcode	found True	Option

12.5 Do something if data has changed

Several nodes check if data has changed in a certain way and only let an event through if it has:

Changed, Increased, Decreased, Became True, and Became False. In the composition below, the Be-

came True node outputs an event each time the output of Is Within Rectangle changes from false to

true, emitting a sound effect each time the mouse cursor enters the square.

1

Became	True
vuo.event.becameTrue

Value

Fire	on	Start
vuo.event.fireOnStart

Started

Is	within	Rectangle
vuo.point.within.rectangle

Point
(0,	0) Center

Width
Height

Make	Rectangle	Layer
vuo.layer.make.rect

Color
Center Anchor
(0,	0) Position

0 Rotation
Width
Height

1 Sharpness
0 Roundness
1 Opacity

Play	Audio	File
vuo.audio.file.play

Play
Pause

0 Set	Time
beep.wav URL

None Loop

Decoded	Channels
Finished	Playback

Receive	Mouse	Moves
vuo.mouse.move2

Window
Any Modifier	Key

Foreground App	Focus

Moved	To

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

Send	Live	Audio
vuo.audio.send2

Default Device
Send	Channels

Share	Value
vuo.data.share

0.5 Value

Like Became False and the other nodes just described, the Allow Changes node only lets an event

through if the data has changed. But Allow Changes is different because it passes the data through

along with the event. This can be useful when your composition does something time-consuming

or processor-intensive with the data, and only needs to do that work when the data changes. For

example, this composition periodically picks a large image file to load, but avoids reloading the same

image file if it’s picked twice in a row.

Revised November 24, 2021

12 Common patterns - “How do I…” Page 139 of 162

1

Fire	Periodically
vuo.time.firePeriodically2

1 Seconds Fired	at	Time

List	Files
vuo.file.list

/Library/Desktop	Pictures Folder
False Include	Subfolders

Image File	Type

Cut	List
vuo.list.cut

List
4 Start	Position
3 Item	Count

Allow	Changes
vuo.event.allowChanges2

List					Random	Item Value

Fetch	Image
vuo.image.fetch

URL

Fire	on	Start
vuo.event.fireOnStart

Started

Make	Image	Layer
vuo.layer.make.scaled

Image
Center Anchor

(0,	0) Position
0 Rotation
2 Size

Horizontal Fixed
1 Opacity

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

12.6 Do something after an amount of time has elapsed

Sometimes, you may want a composition to do something immediately in response to an event. Other

times, you may want it to wait until a certain amount of time has passed to do something — for

example, launch an animation, start a video, or display a message.

This composition (Ablage Öffnen Beispiel Zeit Animate On Schedule) launches a series of ani-

mations. At 0.2, 0.4, 0.6, 0.8, and 1 second after the composition starts, it sets in motion the next in

a series of circles. The bouncing movements of the circles are staggered because each Elapsed Time

port of the Schedule node outputs a time that’s 0.2 seconds after the previous Elapsed Time port’s

value.

1
2
3
4
5

0.2 1
0.4 2
0.6 3
0.8 4
1 5

Curve
vuo.motion.curve

Time
(-0.33,	-0.25) Start	Position
(-0.33,	0.25) End	Position

1 Duration
Circular Curve

Out Easing
Mirror Loop

0 Phase

Curve
vuo.motion.curve

Time
(0,	-0.25) Start	Position
(0,	0.25) End	Position

1 Duration
Circular Curve

Out Easing
Mirror Loop

0 Phase

Curve
vuo.motion.curve

Time
(0.33,	-0.25) Start	Position
(0.33,	0.25) End	Position

1 Duration
Circular Curve

Out Easing
Mirror Loop

0 Phase

Curve
vuo.motion.curve

Time
(0.67,	-0.25) Start	Position
(0.67,	0.25) End	Position

1 Duration
Circular Curve

Out Easing
Mirror Loop

0 Phase

Curve
vuo.motion.curve

Time
(-0.67,	-0.25) Start	Position
(-0.67,	0.25) End	Position

1 Duration
Circular Curve

Out Easing
Mirror Loop

0 Phase

Fire	on	Display	Refresh
vuo.event.fireOnDisplayRefresh

Refreshed	at	Time

Make	Oval	Layer
vuo.layer.make.oval2

Color
Center Anchor

Position
0 Rotation

0.15 Width
0.15 Height
1 Sharpness
1 Opacity

Make	Oval	Layer
vuo.layer.make.oval2

Color
Center Anchor

Position
0 Rotation

0.15 Width
0.15 Height
1 Sharpness
1 Opacity

Make	Oval	Layer
vuo.layer.make.oval2

Color
Center Anchor

Position
0 Rotation

0.15 Width
0.15 Height
1 Sharpness
1 Opacity

Make	Oval	Layer
vuo.layer.make.oval2

Color
Center Anchor

Position
0 Rotation

0.15 Width
0.15 Height
1 Sharpness
1 Opacity

Make	Oval	Layer
vuo.layer.make.oval2

Color
Center Anchor

Position
0 Rotation

0.15 Width
0.15 Height
1 Sharpness
1 Opacity

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	WindowSchedule
vuo.time.schedule

Time
Schedule

Until	reset Duration	Type
None Loop

Elapsed	Time	1
Elapsed	Time	2
Elapsed	Time	3
Elapsed	Time	4
Elapsed	Time	5
Elapsed	Time	6
Elapsed	Time	7
Elapsed	Time	8

Revised November 24, 2021

12 Common patterns - “How do I…” Page 140 of 162

Instead of scheduling things relative to the start of the composition, the composition below (Ablage

Öffnen Beispiel Zeit Flash On Mouse Press) schedules things relative to the most recent mouse

press. When themouse is pressed, the rectangle’s color changes to blue, then gray, then blue, then gray.

Why does the Schedule node in this composition schedule things relative to the most recent mouse

press, instead of relative to when the composition started, as in the previous example? Because the

Schedule node’s Time input port gets its data from the Measure Time node, which outputs the time

elapsed since the mouse press.

0 1
0.5 2
0.5 3
0.5 4
0.5 5

1

Allow	First	Event
vuo.event.allowFirst

Event
Reset

Convert	Relative	to	Absolute
vuo.math.relative.absolute

Relative	Values

Fire	on	Display	Refresh
vuo.event.fireOnDisplayRefresh

Refreshed	at	Time

Make	Rectangle	Layer
vuo.layer.make.rect

Color
Center Anchor
(0,	0) Position

0 Rotation
1 Width

0.2 Height
1 Sharpness
0 Roundness
1 Opacity

Measure	Time
vuo.time.measureTime

Time
Start
Pause
Reset

Receive	Mouse	Buttons
vuo.mouse.button2

Window
Left Button
Any Modifier	Key

Pressed
Force	Pressed

Pressure	Changed
Released

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

Schedule
vuo.time.schedule

Time
Schedule

Single Duration	Type
None Loop

Elapsed	Time	1
Elapsed	Time	2
Elapsed	Time	3
Elapsed	Time	4
Elapsed	Time	5
Elapsed	Time	6
Elapsed	Time	7
Elapsed	Time	8

Select	Input
vuo.select.in.boolean

Which
False	Option
True	Option

Toggle
vuo.logic.toggle

Toggle

12.7 Do something repeatedly over time

If you want a composition to do something every N seconds, there are several nodes that fire events

at a steady rate. The Refreshed at Time trigger port the Fire on Display Refresh node fires every time

the computer display refreshes, which is usually about 60 times per second. For a faster or slower

rate, you can use the Fire Periodically node.

The composition below uses a Fire Periodically node to change the width and number of tiled copies

of an image every 3 seconds. This composition actually has two kinds of repetition over time. One is

the change in tile width that occurs every 3 seconds because of the Fire Periodically node. The other

is that the tile width repeats itself every 12 seconds. It goes from 2, to 1, to 0.5, to 0.25, and then back

to 2. This wrapping-around of the tile width is done by the Count within Range node.

1
2

Count	within	Range
vuo.math.countWithinRange

1 Increment
1 Decrement
1 Set	Count
-2 Minimum
1 Maximum

Wrap Wrap	Mode

Exponentiate
vuo.math.exponentiate

2 Base
Integer					Real Exponent

Fire	on	Start
vuo.event.fireOnStart

Started

Fire	Periodically
vuo.time.firePeriodically2

1 Seconds Fired	at	Time

Make	Radial	Gradient	Image
vuo.image.make.gradient.radial2

Colors
(0,	0) Center

1 Radius
0.2 Noise	Amount
640 Width
640 Height

Render	Image	to	Window
vuo.image.render.window2

Image
Set	Window	Description

Updated	Window

Tile	Image
vuo.image.tile

Image
(1,	1) Center

Width
False Reflect	Odd	Rows
False Reflect	Odd	Columns

Revised November 24, 2021

12 Common patterns - “How do I…” Page 141 of 162

Count within Range is one of many ways to cycle through a series of numbers. Another is the Curve

node when its Loop port is set to Loop or Mirror. And another is the Wave node. The composition

below (Ablage Öffnen Beispiel Motion Wave Circle) uses the Wave node to make a circle move

back and forth.

1

Divide
vuo.math.divide.VuoReal

(X,Y)					Y A
100 B

Fire	on	Display	Refresh
vuo.event.fireOnDisplayRefresh

Refreshed	at	Time Make	Oval	Layer
vuo.layer.make.oval2

Color
Center Anchor

X					(X,0) Position
0 Rotation

0.1 Width
0.1 Height
1 Sharpness
1 Opacity

Receive	Mouse	Moves
vuo.mouse.move2

Window
Any Modifier	Key

Foreground App	Focus

Moved	To

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	WindowWave
vuo.motion.wave

Time
Sine Wave

Period
0 Center
1 Amplitude
0 Phase

If you want to cycle through a series of things other than numbers, you can use Cycle through List.

Here’s an example (Ablage Öffnen Beispiel Liste Cycle Seasons) that uses Cycle through List

nodes to cycle through colors and texts, displaying the next one each time the mouse is pressed.

1
2
3

Spring 1
Summer 2

Fall 3
Winter 4

1
2
3
4

Cycle	through	List
vuo.list.cycle2

Go	Forward
Go	Backward
Go	to	First
List

Wrap Wrap	Mode

Item
Position

Cycle	through	List
vuo.list.cycle2

Go	Forward
Go	Backward
Go	to	First
List

Wrap Wrap	Mode

Item
Position

Fire	on	Start
vuo.event.fireOnStart

Started

Make	Rectangle	Layer
vuo.layer.make.rect

Color
Center Anchor
(0,	0) Position
0 Rotation
2 Width
2 Height
1 Sharpness
0 Roundness
1 Opacity

Make	Text	Layer
vuo.layer.make.text2

Text
Avenir-Heavy	72pt Font

Center Anchor
(0,	0) Position
0 Rotation

Auto Wrap	Width
1 Opacity

Make	Text	Layer
vuo.layer.make.text2

Click	to	change	the	season. Text
Avenir-Heavy	36pt Font

Center Anchor
(0,	0) Position
0 Rotation

Auto Wrap	Width
1 Opacity

Receive	Mouse	Buttons
vuo.mouse.button2

Window
Left Button
Any Modifier	Key

Pressed
Force	Pressed

Pressure	Changed
Released

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

12.8 Do something to each item in a list

Process List and Build List are Vuo’s
general-purpose nodes for iteration.
They’re similar to text program-
ming constructs such as loop con-
trol structures and foreach and ap-
ply functions.

Note for
text programmers

The previous section showed how to do something with each list item in turn, using a Cycle through

List node. For each event the Cycle through List node receives, it outputs one list item. If instead you

want an event to do something to all list items, you can use the Process List node.

Revised November 24, 2021

12 Common patterns - “How do I…” Page 142 of 162

Here’s an example (Ablage Öffnen Beispiel Liste Display Grid Of Images) that turns a list of im-

ages into a list of layers using Process List. When Process List gets an event and list of images into its

Start Processing port, it rapidly fires a series of events through its Item port, one event for each image

in the list. The image and event go through the Make Image Layer node, and the created layer and

event go into the Process List node’s Processed Item port. Once that port has received as many events

as Item fired, the Finished Processing port fires an event with the accumulated list of created layers.

1

Arrange	Layers	in	Grid
vuo.layer.arrange.grid

Layers
True Scale	to	Fit

Center Anchor
(0,	0) Position
2 Width
10 Columns
1.25 Height
5 Rows

Fetch	List	of	Images
vuo.image.fetch.list

URLs

Fire	on	Start
vuo.event.fireOnStart

Started
List	Files
vuo.file.list

/Library/User	Pictures Folder
True Include	Subfolders
Image File	Type

Make	Image	Layer
vuo.layer.make.scaled

Image
Center Anchor
(0,	0) Position
0 Rotation
2 Size

Horizontal Fixed
1 Opacity

Process	List
vuo.list.process

Start	Processing
Processed	Item

Finished	Processing
Item

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

12.9 Create a list of things

If you don’t have a list to start with, one way to create one is with the Build List node. Build List

looks a lot like Process List. The difference is that the Build List node’s Start Building port inputs an

integer (the number of list items to create) instead of a list, and the Index port rapidly fires a series of

integers (from 1 to the number of list items) instead of input list items. Here’s an example (Ablage

Öffnen Beispiel Liste Display Rainbow Ovals) that uses the Build List node to display a grid of

100 different-colored ovals.

1

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

Arrange	Layers	in	Grid
vuo.layer.arrange.grid

Layers
False Scale	to	Fit
Center Anchor
(0,	0) Position
1.8 Width
10 Columns

1.25 Height
10 Rows

Build	List
vuo.list.build

100 Start	Building
Built	Item

Finished	Building
IndexFire	on	Start

vuo.event.fireOnStart

Started

Fire	Periodically
vuo.time.firePeriodically2

1 Seconds Fired	at	Time

Make	HSL	Color
vuo.color.make.hsl

Hue
1 Saturation

0.75 Lightness
0.5 Opacity

Make	Oval	Layer
vuo.layer.make.oval2

Color
Center Anchor
(0,	0) Position

0 Rotation
0.3 Width
0.2 Height
1 Sharpness
1 Opacity

Make	Random	Value
vuo.noise.random

0 Minimum
1 Maximum

Build List and Process List are general-purpose tools. Vuo also provides some simpler, more special-

ized ways to create certain types of lists. These include Make Random List to make a list of random

numbers or points, Copy Layer and Copy Scene to duplicate a 2D or 3D object, and Enqueue, which is

explained in the next section.

Revised November 24, 2021

12 Common patterns - “How do I…” Page 143 of 162

12.10 Maintain a list of things

Sometimes you may want not only to create a list, but also to hold onto it and make changes to it

over time. One way to do that is with a feedback loop, as in the example composition below (Ablage

Öffnen Beispiel Liste Replace Colors In Gradient). It maintains a list of colors, randomly changing

one of them every 1 second.

1

Make	Random	Value
vuo.noise.random

1 Minimum
7 Maximum

Make	Random	Value
vuo.noise.random

0 Minimum
1 Maximum

Change	Item	in	List
vuo.list.change

List
Position
New	Item

False Expand	List	if	Needed

Fire	on	Start
vuo.event.fireOnStart

Started

Fire	Periodically
vuo.time.firePeriodically2

1 Seconds Fired	at	Time

Hold	List
vuo.data.hold.list2

Update
Value

Make	HSL	Color
vuo.color.make.hsl

Hue
1 Saturation

0.7 Lightness
1 Opacity

Make	Linear	Gradient	Image
vuo.image.make.gradient.linear2

Colors
(-1,	0) Start
(1,	0) End

0.2 Noise	Amount
800 Width
500 Height

Render	Image	to	Window
vuo.image.render.window2

Image
Set	Window	Description

Updated	Window

Select	Latest	List
vuo.select.latest.list.2

Option	1
Option	2

Copy	List	Items
vuo.list.spread

List
7 Copies

Another way you might want to maintain a list is to accumulate a queue of items over time, using

the Enqueue node. A queue in this node is like a queue of people waiting in line. It’s first-in-first-out,

meaning that new items get added to the end of the line, and the item that’s been waiting in line the

longest is the next one that can leave the queue. Here’s an example that uses Enqueue to remember

the positions of the 5 most recent mouse presses.

(1,	1) 1
0 1

1

Allow	First	Event
vuo.event.allowFirst

Event
Reset

Copy	Layer
vuo.layer.copy.trs

Layer
Translations
Rotations
Scales

Enqueue
vuo.list.enqueue

Add	Item
5 Max	Item	Count

Oldest Discard	when	Full
Clear	List

Make	Oval	Layer
vuo.layer.make.oval2

Color
Center Anchor

(0,	0) Position
0 Rotation

0.1 Width
0.1 Height

1 Sharpness
1 Opacity

Receive	Mouse	Buttons
vuo.mouse.button2

Window
Left Button
Any Modifier	Key

Pressed
Force	Pressed

Pressure	Changed
Released

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

12.11 Gradually change from one number/point to another

Earlier, under “Do something repeatedly over time”, the Curve and Wave nodes were mentioned as

ways to cycle through a series of numbers or points. You can also think of these nodes as ways to

Revised November 24, 2021

12 Common patterns - “How do I…” Page 144 of 162

gradually change from one number or point to another. Here’s an example that uses a Curve node to

gradually move a circle from one point to another. Since the Curve port is set to Quadratic and the

Easing port is set to In + Out, the circle starts moving slowly, picks up speed, and then slows down as

it reaches its destination.

1

Curve
vuo.motion.curve

Time
(-0.5,	-0.2) Start	Position

(0.5,	0.2) End	Position
4 Duration

Quadratic Curve
In+out Easing

Loop Loop
0 Phase

Fire	on	Display	Refresh
vuo.event.fireOnDisplayRefresh

Refreshed	at	Time

Make	Oval	Layer
vuo.layer.make.oval2

Color
Center Anchor

Position
0 Rotation

0.4 Width
0.4 Height

1 Sharpness
1 Opacity

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

Another way to gradually change from one number or point to another is with the “Smooth” nodes

— Smooth with Duration, Smooth with Inertia, Smooth with Rate, and Smooth with Spring. Here’s an

example (Ablage Öffnen Beispiel Motion Spring Back) that makes a square spring back to the

center of the window when the user drags and releases it.

1
2

Make	Rectangle	Layer
vuo.layer.make.rect

Color
Center Anchor

Position
0 Rotation

0.5 Width
0.5 Height
1 Sharpness

0.5 Roundness
1 Opacity

Fire	on	Display	Refresh
vuo.event.fireOnDisplayRefresh

Refreshed	at	Time

Receive	Mouse	Drags	on	Layer
vuo.layer.drag2

Layer
Window

Left Button
Any Modifier	Key

Started	Drag
Dragged	To
Ended	Drag

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window
Select	Latest
vuo.select.latest.2

(0,	0) Option	1
Option	2

Smooth	with	Spring
vuo.motion.smooth.spring

Time
Set	Position

(0,	0) Set	Target
0.5 Period
0.5 Damping

Position
Reached	Target

Make	Text	Layer
vuo.layer.make.text2

Drag	the	layer	and	let	go. Text
Avenir-Heavy	28pt Font

Center Anchor
(0,	-0.4) Position

0 Rotation
Auto Wrap	Width

1 Opacity

Allow	First	Event
vuo.event.allowFirst

Event
Reset

12.12 Set up a port’s data when the composition starts

When a composition starts running, its data-and-event input ports start out with some initial data —

either the port’s constant value, if you’ve used the input editor to set one for the port, or the port’s

default value. An input port with an incoming data-and-event cable stays at its default value until the

first data-and-event comes in through the cable. Sometimes you may want to send certain data with

that first event so that the port will start off with the right value.

A simple way to do that is with a Fire on Start node. In the Smooth with Spring example in the previous

section, the Fire on Start node fires an event that sets up the data for two input ports. One is the Align

Layer to Window node’s Layer input port, which gets the layer created by Make Text Layer. The other

is the Smooth with Spring node’s Set Position input port, which gets initialized to (0,0). The Select

Latest node helps out here by sending (0,0) to the Set Position port for the Fire on Start event and,

after that, the current mouse position each time the Receive Mouse Drags on Layer fires an event.

Revised November 24, 2021

12 Common patterns - “How do I…” Page 145 of 162

Using Fire on Start to set up data is pretty simple, but it has one weakness: the Fire on Start node’s

trigger isn’t coordinated with other triggers in the composition. If you’re trying to use Fire on Start

together with the Refreshed at Time port of Fire on Display Refresh, you might see a momentary flicker

or adjustment in graphics as the composition starts. That’s because the Fire on Start event and the

first Refreshed at Time event are setting up different parts of the graphics at slightly different times.

So how can you avoid the flicker? Instead of Fire on Start, which fires its own event, use Allow First

Event, which can borrow the event fired from Refreshed at Time. Here’s an example.

1

Allow	First	Event
vuo.event.allowFirst

Event
Reset

Fire	on	Display	Refresh
vuo.event.fireOnDisplayRefresh

Refreshed	at	Time

Make	Rectangle	Layer
vuo.layer.make.rect

Color
Center Anchor
(0,	0) Position

0 Rotation
2 Width
2 Height
1 Sharpness
0 Roundness
1 Opacity

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

12.13 Send the same data to multiple input ports

If you have several input ports in your composition that all need to stay in sync with the same data,

then it’s usually a good idea to feed cables to all of them from a single output port. But what if the

data isn’t coming from an output port — what if it’s a constant value? In that case, you can use a Share

Value node to set the constant value in one place and propagate it from the Share Value node’s output

port to all connected input ports.

Here’s an example that draws two shapes, all of the same height. You could accomplish the same

thing without the Share Value node by using input editors to individually set the Height input ports

to 0.8. The advantage of using Share Value is that, if you change your mind and decide the height

should be 1.0 instead, you only have to edit it on the Share Value node’s input port instead of on all

connected input ports.

Revised November 24, 2021

12 Common patterns - “How do I…” Page 146 of 162

1
2

Fire	on	Start
vuo.event.fireOnStart

Started

Make	Oval	Layer
vuo.layer.make.oval2

Color
Center Anchor
(-0.5,	0) Position

0 Rotation
0.4 Width

Height
1 Sharpness
1 Opacity

Make	Rectangle	Layer
vuo.layer.make.rect

Color
Center Anchor
(0.5,	0) Position

0 Rotation
0.4 Width

Height
1 Sharpness
0 Roundness
1 Opacity

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

Share	Value
vuo.data.share

0.8 Value

12.14 Merge data/events from multiple triggers

When you have streams of events from multiple triggers flowing through your composition, usually

those streams of events have to merge somewhere in the composition.

Sometimes the streams of events just naturally overlap, as in the example below (Ablage

Öffnen Beispiel Szene Move Spinning Sphere). The events fired from the Refreshed at Time port

on Fire on Display Refresh and the events fired from the Moved To port on Receive Mouse Moves both

travel through the Make Transform and Make Sphere nodes to the Render Scene to Window Node.

1
Allow	First	Event
vuo.event.allowFirst

Event
Reset

Change	Speed
vuo.time.changeSpeed

Time
45 Speed

Reset

Fire	on	Display	Refresh
vuo.event.fireOnDisplayRefresh

Refreshed	at	Time

Make	Checkerboard	Image
vuo.image.make.checkerboard2

Upper	Left	Color
Upper	Right	Color

0.1 Square	Size
1 Sharpness
0 Angle

(0.5,	0.5) Coverage
(0,	0) Center
800 Width
400 Height

Make	Sphere
vuo.scene.make.sphere

Transform
Material

16 Rows
16 Columns

Make	Transform
vuo.transform.make

(X,Y)					(X,Y,0) Translation
Y					(0,Y,0) Rotation

(0.25,	0.25,	0.25) Scale

Receive	Mouse	Moves
vuo.mouse.move2

Window
Any Modifier	Key

Foreground App	Focus

Moved	To

Render	Scene	to	Window
vuo.scene.render.window2

Objects
Camera	Name

4 Multisampling
Set	Window	Description

Updated	Window
Make	Lit	Image	Shader
vuo.shader.make.image

Image
1 Opacity

Highlight	Color
0.5 Shininess

Other times, you may want to merge the event streams more intentionally. Here’s an example

(Ablage Öffnen Beispiel Auswählen Show Arrow Presses) that takes input from key presses on

different arrow keys, and displays a message for each one. The Select Latest node lets the events

from each arrow key through.

Revised November 24, 2021

12 Common patterns - “How do I…” Page 147 of 162

1

Select	Latest
vuo.select.latest.2

Press	an	arrow	key,	hold	then	release… Option	1
Option	2

Select	Latest
vuo.select.latest.8

↑ Option	1
↓ Option	2
→ Option	3
← Option	4

Option	5
Option	6
Option	7
Option	8

Fire	on	Start
vuo.event.fireOnStart

Started
Make	Text	Layer
vuo.layer.make.text2

Text
Avenir-Heavy	48pt Font

Center Anchor
(0,	0) Position

0 Rotation
Auto Wrap	Width

1 Opacity

Receive	Keyboard	Buttons:	left
vuo.keyboard.button2

Window
Left	Arrow Key

Any Modifier	Key
False Repeat	when	Held

Pressed
Released

Receive	Keyboard	Buttons:	down
vuo.keyboard.button2

Window
Down	Arrow Key

Any Modifier	Key
False Repeat	when	Held

Pressed
Released

Receive	Keyboard	Buttons:	up
vuo.keyboard.button2

Window
Up	Arrow Key

Any Modifier	Key
False Repeat	when	Held

Pressed
Released

Receive	Keyboard	Buttons:	right
vuo.keyboard.button2

Window
Right	Arrow Key

Any Modifier	Key
False Repeat	when	Held

Pressed
Released

Render	Layers	to	Window
vuo.layer.render.window2

Layers
Off Multisampling

Set	Window	Description

Updated	Window

Here’s an example that shows a different way of merging two event streams. This composition

(Ablage Öffnen Beispiel Data Store Mouse Position) draws two gradients that each follow the

mouse cursor a bit differently. The purple (upper) gradient stays with the mouse all the time. The

violet (lower) gradient only updates every 1 second. For the lower gradient, the event streams from

Receive Mouse Moves and Fire Periodically merge at the Hold Value node. Unlike the composition in

the previous example, which let both event streams through, this composition lets one event stream

through and blocks the other. However, the data left by the blocked event stream (from Receive

Mouse Moves) gets picked up and carried along downstream by the other event stream (from Fire

Periodically).

1
2

1
2

1
2

Fire	Periodically
vuo.time.firePeriodically2

1 Seconds Fired	at	Time

Hold	Value
vuo.data.hold2

Update
Value

Make	Radial	Gradient	Layer
vuo.layer.make.gradient.radial2

Colors
(0,	0) Gradient	Center

1 Gradient	Radius
0.2 Gradient	Noise	Amount

Center Layer	Anchor
Layer	Position

0 Layer	Rotation
0.1 Layer	Width
0.1 Layer	Height

1 Layer	Opacity

Make	Radial	Gradient	Layer
vuo.layer.make.gradient.radial2

Colors
(0,	0) Gradient	Center

1 Gradient	Radius
0.2 Gradient	Noise	Amount

Center Layer	Anchor
Layer	Position

0 Layer	Rotation
0.1 Layer	Width
0.1 Layer	Height

1 Layer	Opacity

Receive	Mouse	Moves
vuo.mouse.move2

Window
Any Modifier	Key

Foreground App	Focus

Moved	To

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

12.15 Route data/events through the composition

Vuo’s Select Input and Select Out-
put are similar to if/else or
switch/case statements.

Note for
text programmers

In the last example in the previous section, events from the Receive Mouse Moves node’s trigger were

always blocked at the Hold Value node, and events from the Fire Periodically node’s trigger were

always allowed through. Instead of always blocking one trigger’s events and always letting another

trigger’s events through, what if you want to switch between the event streams?

Here’s an example with a keyboard control that switches the data-and-event stream that controls a

circle’s position. When the user presses the space bar, setting the Select Input node’s Which port to

Revised November 24, 2021

12 Common patterns - “How do I…” Page 148 of 162

true, the circle is controlled by the Leap Motion device. When the user presses the space bar again,

setting theWhich port to false, the circle is controlled by the mouse. Whichever data-and-event stream

is not controlling the circle at a given time is blocked at the Select Input node.

1

Get	Hand	Values
vuo.leap.get.hand

List					First	Item ID
Transform

Palm	Velocity
Wrist	Position
Sphere	Radius
Sphere	Center
Pinch	Amount
Grab	Amount
Is	Left	Hand
Time	Visible
Confidence

Fingers

Select	Input
vuo.select.in.boolean

Which
False	Option

(X,Y,Z)					(X,Y) True	Option

Toggle
vuo.logic.toggle

Toggle

Receive	Leap	Frame
vuo.leap.receive

Received	Frame

Receive	Mouse	Moves
vuo.mouse.move2

Window
Any Modifier	Key

Foreground App	Focus

Moved	To

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

Get	Frame	Values
vuo.leap.get.frame

ID
Hands

Pointables

Make	Oval	Layer
vuo.layer.make.oval2

Color
Center Anchor

Position
0 Rotation

0.3 Width
0.3 Height
1 Sharpness
1 Opacity

Receive	Keyboard	Buttons
vuo.keyboard.button2

Window
Space Key
Any Modifier	Key

False Repeat	when	Held

Pressed
Released

Instead of taking multiple event streams and picking one to let through, as in the previous example,

what if you have a single event stream and want to pick one of several downstream paths to route

it to? Below is an example of that. The space bar toggles between two circles. Whichever circle is

chosen at a given time is controlled by the mouse. This works because the Select Output node routes

the data-and-event stream from Receive Mouse Moves through just one of its output ports at a time.

1
2

Allow	First	Event
vuo.event.allowFirst

Event
Reset

Fire	on	Display	Refresh
vuo.event.fireOnDisplayRefresh

Refreshed	at	Time

Make	Oval	Layer
vuo.layer.make.oval2

Color
Center Anchor

Position
0 Rotation

0.3 Width
0.3 Height
1 Sharpness
1 Opacity

Make	Oval	Layer
vuo.layer.make.oval2

Color
Center Anchor

Position
0 Rotation

0.3 Width
0.3 Height
1 Sharpness
1 Opacity

Receive	Keyboard	Buttons
vuo.keyboard.button2

Window
Space Key
Any Modifier	Key

False Repeat	when	Held

Pressed
Released

Receive	Mouse	Moves
vuo.mouse.move2

Window
Any Modifier	Key

Foreground App	Focus

Moved	To
Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

Select	Output
vuo.select.out.boolean

Which
In

False	Option
True	Option

Toggle
vuo.logic.toggle

Toggle

12.16 Reuse the output of a node without re-executing the node

Some nodes change their output every time they’re executed. The Count node is an example. If you

feed an event into any of its input ports — Increment, Decrement, or Set Count — the node outputs a

count that’s different from the previous count (except of course in special cases, like doing Set Count

when the node is already at that count). What if you don’t want to change the count, and you just

want to output the current count?

Revised November 24, 2021

12 Common patterns - “How do I…” Page 149 of 162

Here’s an example that increments a count each time the user presses a mouse button, and displays

the current count in a window every 5 seconds. (This same pattern could be applied to practical

situations, such as a sensor incrementing a count each time a person passes through a doorway and

the count periodically being sent over a network to monitor the building’s occupancy.)

1

Count
vuo.math.count

1 Increment
1 Decrement
0 Set	Count

Fire	Periodically
vuo.time.firePeriodically2

5 Seconds Fired	at	Time

Hold	Value
vuo.data.hold2

Update
Value

Make	Text	Layer
vuo.layer.make.text2

Value					Summary Text
HelveticaNeue-Light	28pt Font

Center Anchor
(0,	0) Position

0 Rotation
Auto Wrap	Width

1 Opacity

Receive	Mouse	Buttons
vuo.mouse.button2

Window
Left Button
Any Modifier	Key

Pressed
Force	Pressed

Pressure	Changed
Released

Render	Layers	to	Window
vuo.layer.render.window2

Layers
4 Multisampling

Set	Window	Description

Updated	Window

The key to this composition is theHold Value node. Each time the Count node outputs a value, theHold

Value node holds on to it (in other words, stores it). Every 5 seconds, an event from Fire Periodically

hits the Hold Value node’s Update port, and the Hold Value node outputs the count that it’s storing.

12.17 Run slow parts of the composition in the background

Different parts of the composition can be executing simultaneously. If you havemultiple triggers firing

events through the composition, events from both triggers can be traveling through the composition

at the same time. This fact comes in handy if you want a composition to start working on a slow task

and do something quicker in the meantime.

Here’s an example (Ablage Öffnen Beispiel Event Load Image Asynchronously). The slow task,

in this case, is to download an image from the internet. Immediately after this composition starts

running, it starts downloading the image and, in the meantime, fills the window with a solid color.

The Spin Off Event node is what allows the download to happen in the background. If Spin Off Event

weren’t there, then the Select Latest node would wait for both Make Color Image and Fetch Image to

complete before it executed. But, thanks to Spin Off Event, the Fetch Image node is now executed by

a different event than the Make Color Image node, so Select Latest can go ahead and execute as soon

as Make Color Image is complete.

Revised November 24, 2021

12 Common patterns - “How do I…” Page 150 of 162

Fire	on	Start
vuo.event.fireOnStart

Started

Fetch	Image
vuo.image.fetch

…default/files/vuo-circle-teal-256.png URL

Make	Color	Image
vuo.image.make.color

Color
640 Width
480 Height

Render	Image	to	Window
vuo.image.render.window2

Image
Set	Window	Description

Updated	Window

Select	Latest
vuo.select.latest.2

Option	1
Option	2

Spin	Off	Event
vuo.event.spinOffEvent2

Fire Spun	Off

Revised November 24, 2021

13 Troubleshooting Page 151 of 162

13 Troubleshooting

What if you run into problems using Vuo? This section describes several ways to figure out why a

composition isn’t working correctly. For further help, you can visit our community page.

13.1 Tools for troubleshooting compositions

Several features of the Vuo editor can help you understand and debug the behavior of your composi-

tions.

13.1.1 Watch events with Show Events mode

Show Events mode lets you watch the events flow through your composition. You can turn it on and off

with the Ausführen Ereignisse anzeigen and Ausführen Ereignisse ausblenden menu items. In Show

Events mode, trigger ports are animated as they fire events. Nodes turn opaque as they’re executed

and gradually become more transparent as time passes since their most recent execution. Using Show

Events mode, you can see if certain parts of your composition are executing.

13.1.2 Watch data and events with port popovers

Port popovers let you inspect the data and events flowing through individual ports. A port popover

pops up when you click on a port. If you want to keep the port popover open for a while, for example

to look at several port popovers at once, click on the popover. While the composition is running, the

port popover shows several pieces of information that can help with debugging:

• Last event — The time of the most recent event through the port, and the average number of

events per second.

• Value — For ports that carry data, the most recent data through the port.

• Event throttling — For trigger ports, whether the port enqueues or drops events.

13.1.3 Watch data and events with Display Console Window

The Display Console Window node shows a window in which your composition can write text. You

can use this node to observe values that are hard to see in port popovers because they’re changing

too rapidly. The Allow Changes node can help by filtering out repeated data.

To find other nodes that can help
with troubleshooting, search the
Node Library for ”debug” or ”trou-
bleshoot”.

Tip

Revised November 24, 2021

https://vuo.org/community

13 Troubleshooting Page 152 of 162

13.1.4 Check for errors in the Console

New in Vuo 2.4Werkzeuge Konsole anzeigen opens a Console window that displays log messages from Vuo. These

can help explain why a composition isn’t working as expected. For example, if you run a composition

containing a Fetch Image node, and the image file that you’re trying to fetch doesn’t exist, the node

will log an error that appears in the Console.

13.1.5 Check your assumptions by reading node descriptions

When you select a node in the Node Library or on the canvas, the node description appears in the

lower panel of the Node Library. The node description tells you in detail how the node is intended to

work.

13.2 Common problems

13.2.1 My composition isn’t working and I don’t know why.

The first step is to take a deep breath and relax! OK, now the second step is to understand the problem.

Here are some questions to ask yourself (or go through with a friend or collaborator):

• What do you expect the composition to do?

• What is the composition doing instead?

• Where in the composition does the problem begin?

Using the tools provided by Vuo, try to narrow down the problem. Figure out exactly which nodes

aren’t working as you expect. Then try some of the more specific troubleshooting steps in the rest of

this section.

13.2.2 Some nodes aren’t executing.

If a node doesn’t become opaque in Show Events mode, or if its port popover says “Last Event: (none

observed)”, then the node isn’t executing. If a node isn’t executing, that means events aren’t reaching

it. Here are some things to check:

• Is there a trigger port connected to the node? Trace backward through your composition, start-

ing at the node that isn’t executing, and looking at the cables and nodes feeding into it. Do

you find a trigger port? If not…

Revised November 24, 2021

13 Troubleshooting Page 153 of 162

– Add a node with a trigger port, such as Fire on Start, and connect the trigger port to the

node that isn’t executing.

• Is the trigger port firing? Check the trigger port’s popover (or connect a Count node, as described

above). If the trigger isn’t firing…

– Check the node description for the trigger port’s node. Make sure you understand exactly

when the trigger is supposed to fire.

– Check the trigger port’s event throttling, which is displayed in the port popover. If it says

“drop events”, try changing it to “enqueue events”. (See the section Buildup of events.)

• Are events from the trigger port reaching some nodes but not others? Trace forward through

your composition, from the trigger port toward the node that isn’t executing, and find the last

node that’s receiving events.

– Look at the input ports on that last node. Do they have walls or doors? (See the section

Event walls and doors.) Check the node’s description to help you understand when and

why the node blocks events. To send events through the node, you may need to connect

a cable to a different input port.

– Look at the output ports on that last node. Are they trigger ports? Remember that events

into input ports never travel out of trigger ports. To send events through the node, you

may need to connect a cable to a different output port.

13.2.3 Some nodes are executing when I don’t want them to.

A node executes every time an event reaches it. If you don’t want the node to execute at certain times,

then your composition needs to block events from reaching the node. For more information, see the

section Common patterns - “How do I…”.

13.2.4 Some nodes are outputting the wrong data.

If your composition is outputting graphics, audio, or other information that’s different from what you

expected, then you should check the data flowing through your composition. Here are some things to

check:

• Where exactly does the data go wrong?

– Check each port popover along the way to see if it has the data you expected.

– Add some nodes to themiddle of the composition to help you check the data (for example,

a Render Image to Window node to check the data in an image port).

• Is there a node whose output data is different than you expected, given the input data?

– Read the node description carefully. The node might work differently than you expected.

Revised November 24, 2021

13 Troubleshooting Page 154 of 162

13.2.5 The composition’s output is slow or jerky.

This can happen if events are not flowing through your composition often enough or quickly enough.

Here are some things to check:

• Is each trigger port firing events as often as you expected? Check its port popover to see the

average number of events per second. If it’s firing more slowly than you expected…

– Check the node description for the trigger port’s node. Make sure you understand exactly

when the trigger is supposed to fire.

– Check for any nodes downstream of the trigger port thatmight take a long time to execute,

for example a Fetch Image node that downloads an image from the internet. Change your

composition so those nodes receive fewer events. (See the section Common patterns -

“How do I…”.)

– Check the trigger port’s event throttling, which is displayed in the port popover. If it says

“drop events”, try changing it to “enqueue events”. (See the section Buildup of events.)

– Check the event throttling of each other trigger port that can fire events through the

same nodes as this trigger port. If the other trigger port’s event throttling is “enqueue

events”, try changing it to “drop events”.

• Is each node receiving events as often as you expected? If not…

– Check if there are any event doors that might be blocking events between the trigger and

the node. (See the section Event walls and doors.)

• Is the composition using a lot of memory or CPU? You can check this in the Activity Monitor

application. If so…

– Check if any parts of the composition are executing more often than necessary, and try

not to execute them as often. (See the section Common patterns - “How do I…”.)

– Export the composition to an application. When run as an application instead of in the

Vuo editor, compositions use less memory and CPU.

– Quit other applications to make more memory and CPU available.

– Run the composition on a computer with more memory and CPU.

13.2.6 Vuo slows down when my computer heats up.

Some Mac systems, including recent MacBook Pros, aren’t designed to adequately dissipate the heat

they generate when under heavy load, so macOS drastically slows down the system in order to gener-

ate less heat. This is called thermal throttling. This behavior may affect the performance of your Vuo

compositions.

Revised November 24, 2021

13 Troubleshooting Page 155 of 162

You can monitor macOS’s thermal throttling by opening Terminal.app and running this com-

mand: pmset -g thermlog. It will automatically update when the status changes. When the

CPU_Speed_Limit value is less than 100, thermal throttling is active.

To mitigate this, consider trying some of the following options:

• Reset your Mac’s SMC to recalibrate its thermal management profile, which may change when

macOS decides to apply thermal throttling.

• Improve your Mac’s heat dissipation:

– Ensure your Mac is in a cool room and placed on a cool surface out of direct sunlight.

– Ensure your Mac’s air inlets and egresses are unobstructed.

– Hire a qualified technician to disassemble your Mac and clean the dust from its fans.

– Use an external fan to draw hot air away from your Mac.

– Install 3rd-party software to increase your Mac’s internal fan speeds.

• Reduce the CPU and GPU usage of your composition:

– Reduce the image and mesh resolutions.

– Reduce the framerate.

– Reduce the number or quality of image filters.

13.2.7 Various compositions won’t run

If compositions fail to start, the problem could be that you have a node installed that for some reason

prevents Vuo from running compositions. The node might be outdated or broken, or it might trigger

a latent bug in Vuo.

If Vuo is unable to deal with one of your installed nodes, then it may write a log message that you can

find in Werkzeuge Konsole anzeigen . If you don’t see any relevant messages, try relaunching Vuo

and checking the Console again. The log message may point out the problematic node.

If the Console messages don’t help you identify the problem, another thing you can try is to uninstall

all nodes, including subcompositions. The quickest way to do this is to rename your User Library

folder and System Library folder (if not empty}. (For more information, see Installing a node.) Then

relaunch Vuo. If you’re now able to run compositions, then one of the nodes that you just uninstalled

must have been the problem.

From there, the next step is to figure out which node is the problem. You can do this efficiently by

first reinstalling half of your nodes. If the problem returns, then the problematic node must be in that

half, so uninstall half of them and see what happens. Otherwise, reinstall half of the remaining nodes.

Continue working by halves until you’ve narrowed the problem down to one node.

Once you’ve pinpointed the problematic node or subcomposition, the best way to get help depends on

where the node came from. If you downloaded it from another Vuo community member, try contacting

them for help. If you created the node yourself, you can ask for help on the community page.

Revised November 24, 2021

https://support.apple.com/en-us/HT201295
https://vuo.org/community

13 Troubleshooting Page 156 of 162

13.3 General tips

Finally, here are a few more tips to help you troubleshoot compositions:

• If you’re having trouble with a large and complicated composition, try to simplify the problem.

Create a new composition and copy a small piece of your original composition into it. It’s much

easier to troubleshoot a small composition than a large one.

• If you’re having trouble with a composition that has rapidly firing trigger ports, try to slow

things down. For example, in place of the Fire on Display Refresh node, use a Fire Periodically

node set to fire once per second.

• If your composition used to work but now it doesn’t, figure out exactly what changed. Did you

add or remove some cables? Were you using a different version of Vuo? Knowing what changed

will help you narrow down the problem.

• Try rearranging your nodes and cables so you can see the flow of events more clearly. If your

nodes and cables are nicely laid out, then it can be easier to spot problems.

• Don’t hesitate to experiment (but first save a copy of your composition). If you’re not sure if a

node is working as you expect, try it with various inputs.

• You’re welcome to ask questions or report a bug.

Revised November 24, 2021

https://vuo.org/community
https://vuo.org/bug

14 Contributors Page 157 of 162

14 Contributors

Vuo is built andmaintained by TeamVuo and the Vuo Community. Everyone is encouraged to contribute

toward improving Vuo.

14.1 Contributors

Below is an alphabetical list of the people who have contributed to bringing Vuo to fruition.

• .lov.

• 2bitpunk

• 3lab_tv

• AdrienM1

• ajm

• akashaslc

• Alejo

• alexmitchellmus

• AN 2x4

• Anthony

• architek1

• ariam

• atompowered

• automatone

• a_o

• baksej

• balam

• Benedikt

• bLackburst

• bmellen

• Bodysoulspirit

• Bonemap

• botnotbot

• carlitos

• casdekker

• conanp

• cremaschi

• cwilms-loyalist

• cwright

• cymaspace

• danmillest

• David

• ddelcourt

• destroythings

• DetAndreTeatret

• DiGiTaLFX

• Doro

• dr.drainaway

• dumski

• e.duchemin

• eganpc

• ellington

• emervark

• errol

• eseftel

• Eurotrash

• franz

• fRED

• gabe

• gautjac

• George_Toledo

• Gillieron

• iason

• Illuminator

• inadvisable

• inx

• jandraka

• jayeazy

• Jennifer Greb

• Jérôme Lanon

• jersmi

• jinyaolin

• jmcc

• Jobok31

• joeladria

• Joëlle

• johnnykuo

• jokkeheikkila

• jon121

• jstrecker

• jte2384

• jungbas

• jvolker

• keithlang

• Kewl

• khenkel

• kingluma

• Kino

• kokot

• kozistan

• krezrock

• laFideo

• Landscaper

• lechbialek

• lhepner

• lipoqil

• Lucas Garcias

• Luiz Andre

• manuel_mitasch

• marcorexo1

Revised November 24, 2021

https://vuo.org/about
https://vuo.org/contribute
https://vuo.org/user/81
https://vuo.org/user/169
https://vuo.org/user/761
https://vuo.org/user/2492
https://vuo.org/user/243839
https://vuo.org/user/1403118
https://vuo.org/user/202
https://vuo.org/user/2682
https://vuo.org/user/2220136
https://vuo.org/user/63002
https://vuo.org/user/1603
https://vuo.org/user/739454
https://vuo.org/user/910
https://vuo.org/user/2803
https://vuo.org/user/298
https://vuo.org/user/951938
https://vuo.org/user/3322
https://vuo.org/user/1079951
https://vuo.org/user/364
https://vuo.org/user/29
https://vuo.org/user/2475
https://vuo.org/user/424
https://vuo.org/user/563651
https://vuo.org/user/2638
https://vuo.org/user/2837
https://vuo.org/user/160
https://vuo.org/user/599
https://vuo.org/user/182
https://vuo.org/user/305
https://vuo.org/user/421782
https://vuo.org/user/2025790
https://vuo.org/user/556801
https://vuo.org/user/148
https://vuo.org/user/89
https://vuo.org/user/1378891
https://vuo.org/user/50
https://vuo.org/user/434891
https://vuo.org/user/1794335
https://vuo.org/user/3606
https://vuo.org/user/543635
https://vuo.org/user/920
https://vuo.org/user/445
https://vuo.org/user/925
https://vuo.org/user/375
https://vuo.org/user/3045
https://vuo.org/user/2347
https://vuo.org/user/69
https://vuo.org/user/119
https://vuo.org/user/893
https://vuo.org/user/1051
https://vuo.org/user/142
https://vuo.org/user/500066
https://vuo.org/user/292
https://vuo.org/user/712
https://vuo.org/user/911
https://vuo.org/user/3010
https://vuo.org/user/307
https://vuo.org/user/1325760
https://vuo.org/user/1979320
https://vuo.org/user/609825
https://vuo.org/user/748
https://vuo.org/user/214
https://vuo.org/user/14
https://vuo.org/user/2313
https://vuo.org/user/111
https://vuo.org/user/1756728
https://vuo.org/user/235
https://vuo.org/user/1558
https://vuo.org/user/1795146
https://vuo.org/user/22
https://vuo.org/user/621
https://vuo.org/user/1327052
https://vuo.org/user/3248
https://vuo.org/user/2018286
https://vuo.org/user/657937
https://vuo.org/user/32
https://vuo.org/user/888
https://vuo.org/user/146
https://vuo.org/user/290436
https://vuo.org/user/358860
https://vuo.org/user/3462
https://vuo.org/user/126502
https://vuo.org/user/97449
https://vuo.org/user/1088884
https://vuo.org/user/982661
https://vuo.org/user/61721
https://vuo.org/user/1990567
https://vuo.org/user/3195
https://vuo.org/user/762500
https://vuo.org/user/1128678

14 Contributors Page 158 of 162

• marioepsley

• MartinusMagneson

• materialvision

• mattgolsen

• MatthewDougherty

• meno

• micpool

• microlomaniac

• miramon9

• mixfilet

• mkegan

• mnstri

• mradcliffe

• mrray

• mutable

• Nicolas Berger

• owlbert

• p8guitar

• pbourke

• Pianomatic

• prackvj

• pyramus

• raphael

• rbetin

• richardbyers

• rmercuri

• robaiello

• ryandmonk

• sala28

• Salvo

• savienojums

• sboas

• Scratchpole

• seanradio

• shakinda

• Sigve

• SimHacker

• sinemod

• sinsynplus

• smokris

• Steamboy

• steinboy

• stromqvist

• synnack

• Taco Circus

• tarakhanal

• teaportation

• tfrank

• timwessman

• tivonrice

• tmoles

• tobyspark

• unfenswinger

• unicode

• useful design

• vidbeat

• video piglet

• visiophone

• vjsatoshi

• vj_dobermann

• volkerku

• WARP

• wmackwood

• Xavier dev

• xoanxil

• zwei-p

• zzkj

Thanks to our contributors!

14.2 Software Vuo uses

• Apple Csu

• Apple dyld

• Apple ld64

• BeatDetektor

• Clang

• Conan

• Cppcheck

• Discount

• DocBook

• Doxygen

• FFmpeg

• FreeImage

• Gamma

• Ghostscript

• Graphviz

• Hap

• JSON-C

• LLVM

• LaTeX

• Leap Motion

• NewTek NDI®

• Open Asset Import

• OpenSSL

• Pandoc

• Qt

• RtAudio

• RtMidi

• Snappy

• Squish

• Syphon

• YCoCg-DXT

• ZXing

• alex

Revised November 24, 2021

https://vuo.org/user/979214
https://vuo.org/user/3272
https://vuo.org/user/1225457
https://vuo.org/user/47
https://vuo.org/user/1832401
https://vuo.org/user/443748
https://vuo.org/user/1751849
https://vuo.org/user/1489601
https://vuo.org/user/397929
https://vuo.org/user/1202767
https://vuo.org/user/31
https://vuo.org/user/92
https://vuo.org/user/28
https://vuo.org/user/807
https://vuo.org/user/874
https://vuo.org/user/2011950
https://vuo.org/user/208266
https://vuo.org/user/3067
https://vuo.org/user/2025
https://vuo.org/user/851
https://vuo.org/user/194
https://vuo.org/user/489
https://vuo.org/user/871
https://vuo.org/user/743
https://vuo.org/user/703
https://vuo.org/user/306
https://vuo.org/user/3637
https://vuo.org/user/649
https://vuo.org/user/94
https://vuo.org/user/915285
https://vuo.org/user/679
https://vuo.org/user/3555
https://vuo.org/user/1653
https://vuo.org/user/433816
https://vuo.org/user/3558
https://vuo.org/user/3530
https://vuo.org/user/1116
https://vuo.org/user/404679
https://vuo.org/user/247
https://vuo.org/user/9
https://vuo.org/user/924
https://vuo.org/user/152153
https://vuo.org/user/916
https://vuo.org/user/669
https://vuo.org/user/96076
https://vuo.org/user/2148539
https://vuo.org/user/559
https://vuo.org/user/484
https://vuo.org/user/1084252
https://vuo.org/user/3456
https://vuo.org/user/27
https://vuo.org/user/155
https://vuo.org/user/3177
https://vuo.org/user/419526
https://vuo.org/user/143
https://vuo.org/user/1987677
https://vuo.org/user/1900514
https://vuo.org/user/1330701
https://vuo.org/user/277
https://vuo.org/user/2154930
https://vuo.org/user/898
https://vuo.org/user/923
https://vuo.org/user/7975
https://vuo.org/user/1344
https://vuo.org/user/1210346
https://vuo.org/user/74
https://vuo.org/user/706198
https://opensource.apple.com/source/Csu/
https://opensource.apple.com/source/dyld/
https://opensource.apple.com/source/ld64/
https://github.com/cjcliffe/beatdetektor
http://clang.llvm.org
https://www.conan.io
https://github.com/danmar/cppcheck
http://www.pell.portland.or.us/~orc/Code/discount/
http://www.docbook.org/
http://doxygen.org
http://ffmpeg.org/
http://freeimage.sourceforge.net/
http://mat.ucsb.edu/gamma/
http://www.ghostscript.com/
http://graphviz.org
https://github.com/Vidvox/hap-in-avfoundation
https://github.com/json-c/json-c/wiki
http://llvm.org
http://tug.org
https://www.leapmotion.com/
https://www.ndi.tv/
http://www.assimp.org/
http://www.openssl.org
http://johnmacfarlane.net/pandoc
https://www.qt.io
https://github.com/thestk/rtaudio
https://github.com/thestk/rtmidi
http://google.github.io/snappy/
https://sourceforge.net/projects/libsquish/
http://syphon.v002.info/
http://web.archive.org/web/20090209040059/http://developer.nvidia.com/object/real-time-ycocg-dxt-compression.html
https://github.com/zxing/zxing
https://github.com/get-alex/alex

14 Contributors Page 159 of 162

• codespell

• csgjs-cpp

• glib

• http-parser

• libcsv

• libcurl

• libfacedetection

• libffi

• libfreenect

• libfreenect2

• libintl (gettext)

• libjpeg-turbo

• liblqr

• libusb

• libxml2

• muParser

• nginx

• oscpack

• overcommit

• pngquant

• stb_textedit

• zlib

• ØMQ

14.3 Resources Vuo uses

• PT Sans

Revised November 24, 2021

https://github.com/codespell-project/codespell
https://github.com/dabroz/csgjs-cpp
https://wiki.gnome.org/Projects/GLib
https://github.com/joyent/http-parser/
https://sourceforge.net/projects/libcsv/
http://curl.haxx.se/libcurl/
https://github.com/ShiqiYu/libfacedetection
http://sourceware.org/libffi/
https://github.com/OpenKinect/libfreenect
https://github.com/OpenKinect/libfreenect2
https://www.gnu.org/software/gettext/
http://libjpeg-turbo.org/
https://github.com/carlobaldassi/liblqr
http://libusb.info
http://xmlsoft.org/
https://github.com/beltoforion/muparser/
http://nginx.org/
http://www.rossbencina.com/code/oscpack
https://github.com/sds/overcommit
http://pngquant.org/
https://github.com/nothings/stb
http://www.zlib.net/
http://zeromq.org
https://company.paratype.com/pt-sans-pt-serif

Glossary Page 160 of 162

Glossary

cable A line connecting nodes; the conduit that data and events travel through 33

composition A document you create in Vuo 28

Composition-Local Library A folder containing nodes that are available only to compositions located

next to the folder 75

Console A window that displays log messages. 152

constant value Data in an input port that doesn’t have a connected data-and-event cable. 35, 63

coordinate system A way to represent a position in 2D or 3D using numbers 69

data A piece of information 32

data type The format of a piece of information, such as numeric or textual 54

data-and-event cable A cable that carries both events and data 33

deadlocked feedback loop A feedback loopwhere it’s impossible for an event to travel through all the

cables leading up to a node before reaching the node itself 52

deprecated Obsolete or outdated 68

dictionary A set of data items that can be looked up by name 57

downstream Nodes that execute after other nodes 34

drawer An attachment to a port that lets you input each item of a list or dictionary separately 66

drop events The trigger port won’t fire an event if the event would have to wait for the downstream

nodes to finish processing a previous event (from this or another trigger port) 53

enqueue events The trigger port will keep firing events regardless of whether the downstream nodes

can keep up 53

event Controls when nodes do their job and how information flows between nodes 30

event door May or may not allow an event to go out any of the node’s output ports (exact behavior

depends on the node, and is explained in the node’s documentation) 35, 41

event throttling Controls whether a trigger port will enqueue events or drop events 52

event wall Prevents an event from going out any of the node’s output ports 35, 41

event-only cable A cable that carries only events, not data 33

execute Perform a specific job 30

Revised November 24, 2021

Glossary Page 161 of 162

feedback loop A group of nodes connected by cables forming a loop, causing the group’s latest output

to be affected by the group’s prior output 46

fire Originate an event 30

generic data type a stand-in used when a port has a changeable data type and the data type hasn’t

been decided yet 58

Image Filter A protocol for altering an image 89

Image Generator A protocol for creating an image 90

Image Transition A protocol for transitioning from one image to another 92

infinite feedback loop A feedback loop that a single event could loop through repeatedly without

being blocked by an event wall. 51

input editor A widget for setting the value of an input port 63

input port Receives information into a node 34, 40

list A sequence of data items 57

node A building block that performs a specific job 28

node class name A categorical name that reveals specific information about a node, shown directly

below the node’s title 118

node description Tells you how a node is supposed to work; appears in the Node Documentation

Panel whenever you select the node in the Node Library or on the canvas 152

Node Documentation Panel The lower section of the Node Library, which describes the general pur-

pose of the node as well as details that will help you use it 118

Node Library The panel or floating window in Vuo’s user interface that lets you explore and use Vuo’s

nodes 117

node title A quick description of a node’s function, shown at the top of a node 118

output port Sends information out of a node 35, 42

port action A port that causes the node to do something different when it receives an event than it

does when any other input port receives an event 42

port popover A panel that shows a port’s current value, shown when you click on a port 151

Pro node A node that is only available in Vuo Pro 68

protocol A predetermined set of published ports with certain names and data types 89

published port Receives or sends data outside the composition 37

Revised November 24, 2021

Glossary Page 162 of 162

Scale Factor The ratio of pixels per linear point. For example, Scale Factor 2 means there are 2 pixels

per linear point, or 4 pixels per square point. 101

Show Events mode Lets you watch the events flow through your composition 151

subcomposition A composition that can be used as a node inside of other compositions 76

System Library folder A folder containing nodes that are available to any composition opened by any

user logged into the computer 74, 155

trigger port A port that fires events 30, 39

type-converter node A node that translates data from one type to another 55

upstream Nodes that execute before other nodes 34

User Library folder A folder containing nodes that are available to any composition opened by the

user currently logged into the computer 74, 155

Vuo Coordinates Vuo’s specific coordinate system, where the center of the rendering area is repre-

sented by (0,0) for 2D graphics or (0,0,0) for 3D graphics 69

yank zone The section of the cable with the extra-bright highlighting when hovering over it, which

lets you drag the cable away from an input port to which it is currently connected 121

Revised November 24, 2021

	Getting started
	Quick start
	Creating a new composition
	Running the composition
	Adding a node
	Connecting nodes with cables
	Editing an input port value
	Adding another node
	Summary

	Tracing through a composition
	Port popovers
	Information flow
	Step 1: Fire on Display Refresh to Make Noise Image
	Step 2: Make Noise Image to Make Stained Glass Image
	Step 3: Make Stained Glass Image to Render Image to Window
	Summary

	Learning Vuo
	User manual
	Tutorials
	Example compositions
	Community support
	Node documentation
	SDK documentation
	Vuo in other applications

	Installing Vuo
	Activating Vuo Pro

	Changing language settings

	The basics
	A composition is what you create with Vuo
	Nodes are your building blocks
	Events are what cause nodes to execute
	Trigger ports fire events and sometimes data
	Events and data travel through cables
	Events and data enter and exit a node through ports
	Events and data enter and exit a composition through published ports

	How events and data travel through a composition
	Where events come from
	How events travel through a node
	Input ports
	Output ports

	How events travel through a composition
	The rules of events
	Straight lines
	Splits and joins
	Multiple triggers
	Feedback loops
	Summary

	How data travels through a composition
	Ignoring data
	Data flow without an event

	Solving problems with event flow
	``Infinite feedback loop'' error
	``Deadlocked feedback loop'' error
	Buildup of events

	How compositions process data
	Data types
	Basic data types
	Type-converter nodes
	List data types
	Dictionary data types
	Ports with changeable data types

	Inputting data
	Editing data in a node's input port
	Editing data in a published input port
	Inputting lists
	Inputting dictionaries

	How nodes can be used as building blocks
	Finding out what nodes are available
	Learning how to use a node
	Pro nodes
	Deprecated nodes
	The built-in nodes
	Graphics/video
	Sound/audio
	User input devices
	Music and stage equipment
	Applications
	Sensors, LEDs, and motors
	Displays
	Files
	Internet

	Adding nodes to the canvas by dropping files
	Creating a node
	Installing a node
	Installing a node the quick way
	Making a node available to all compositions
	Making a node available to one or a few compositions
	Uninstalling a node

	Using subcompositions inside of other compositions
	Making a subcomposition available to other compositions
	Reasons to use subcompositions
	Creating a subcomposition
	Naming a subcomposition

	Editing a subcomposition
	Watching events and data inside a subcomposition
	How events travel through a subcomposition
	Events into a subcomposition
	Events out of a subcomposition
	Constant input port values

	Making compositions fit a mold with protocols
	Image Filter protocol
	Published input ports
	Published output ports

	Image Generator protocol
	Published input ports
	Published output ports

	Image Transition protocol
	Published input ports
	Published output ports

	Time
	Quality
	Creating a protocol composition
	Editing a protocol composition
	Running a protocol composition
	How events travel through a protocol composition

	Exporting compositions
	Exporting an image
	Exporting a movie
	Recording the graphics in a window
	Exporting a movie from an Image Generator composition

	Exporting a screen saver
	Sharing screen savers

	Exporting an FxPlug plugin
	Video effects
	Transitions
	Generators
	Category and name
	Parameters
	Image scaling
	Sharing plugins
	Uninstalling plugins
	Maintaining compatibility between plugin versions

	Exporting an FFGL plugin
	Sources
	Effects
	Blend modes
	Name
	Parameters
	Sharing plugins
	Uninstalling plugins

	Exporting an application

	Turning graphics shaders into nodes
	Creating an ISF node
	Editing an ISF node
	Saving an ISF node
	How ISF source code translates to a Vuo node
	Node metadata
	Ports
	Data types
	Output image size and color depth
	Coordinates
	Examples

	Supported ISF features
	Functions
	Uniforms
	Unsupported

	The Vuo editor
	The Node Library
	Docking and visibility
	Node names and node display
	Node Documentation Panel
	Searching for nodes

	Working on the canvas
	Putting a node on the canvas
	Drawing cables to create a composition
	Adding a comment
	Copying and pasting nodes, cables, and comments
	Deleting nodes, cables, and comments
	Rearranging nodes, cables, and comments
	Replacing nodes
	Editing node settings
	Editing port values and settings
	Finding nodes on the canvas
	Viewing a composition
	Publishing ports
	Using a protocol for published ports

	Running a composition
	Starting and stopping a composition
	Firing an event manually

	Editing composition information
	Working with subcompositions
	Installing a subcomposition
	Editing a subcomposition
	Uninstalling a subcomposition

	Changing the editor's appearance
	Dark mode
	Transparency
	Grid points and lines
	Toolbar labels

	Keyboard Shortcuts
	Working with composition files
	Controlling the composition canvas
	Creating and editing compositions
	Creating and editing shaders
	Running compositions (when the Vuo editor is active)
	Running compositions (when the composition is active)
	Application shortcuts

	The command-line tools
	Installing the Vuo SDK
	Getting help
	Building a composition on the command line
	Running a composition on the command line
	Exporting a composition on the command line
	Printing the composition source code

	Common patterns - ``How do I…''
	Do something in response to user input
	Do something after something else is done
	Do something if one or more conditions are met
	Do something if an event is blocked
	Do something if data has changed
	Do something after an amount of time has elapsed
	Do something repeatedly over time
	Do something to each item in a list
	Create a list of things
	Maintain a list of things
	Gradually change from one number/point to another
	Set up a port's data when the composition starts
	Send the same data to multiple input ports
	Merge data/events from multiple triggers
	Route data/events through the composition
	Reuse the output of a node without re-executing the node
	Run slow parts of the composition in the background

	Troubleshooting
	Tools for troubleshooting compositions
	Watch events with Show Events mode
	Watch data and events with port popovers
	Watch data and events with
	Check for errors in the Console
	Check your assumptions by reading node descriptions

	Common problems
	My composition isn't working and I don't know why.
	Some nodes aren't executing.
	Some nodes are executing when I don't want them to.
	Some nodes are outputting the wrong data.
	The composition's output is slow or jerky.
	Vuo slows down when my computer heats up.
	Various compositions won't run

	General tips

	Contributors
	Contributors
	Software Vuo uses
	Resources Vuo uses

	Glossary

